| [1] |
Schwendicke F, Krois J. Precision dentistry-what it is,where it fails (yet),and how to get there [J]. Clin Oral Investig, 2022, 26(4):3395-403. DOI: 10.1007/s00784-022-04420-1.
|
| [2] |
Mun SB, Yoo SR, Kim YJ,et al. AI-driven prediction of dental implant numbers to be placed for patient-specific treatment planning [J]. Int Dent J, 2025, 75(6):103896. DOI: 10.1016/j.identj.2025.103896.
|
| [3] |
Kurt Bayrakdar S, Orhan K, Bayrakdar IS,et al. A deep learning approach for dental implant planning in cone-beam computed tomography images [J]. BMC Med Imaging, 2021, 21(1):86. DOI: 10.1186/s12880-021-00618-z.
|
| [4] |
Esteva A, Robicquet A, Ramsundar B,et al. A guide to deep learning in healthcare [J]. Nat Med, 2019, 25(1):24-29. DOI: 10.1038/s41591-018-0316-z.
|
| [5] |
Lawand G, Gonzaga L, Issa J,et al. Artificial intelligence segmentation errors in implant planning software programs:An overview[J]. Clin Implant Dent Relat Res, 2025, 27(5):e70095. DOI: 10.1111/cid.70095.
|
| [6] |
Alshenaiber R, Cowan C, Barclay C,et al. Analysis of residual ridge morphology in a group of edentulous patients seeking NHS dental implant provision:A retrospective observational lateral cephalometric study [J]. Diagnostics (Basel), 2021, 11(12):2348. DOI: 10.3390/diagnostics11122348.
|
| [7] |
Cawood JI, Howell RA. A classification of the edentulous jaws [J]. Int J Oral Maxillofac Surg, 1988, 17(4):232-236. DOI: 10.1016/s0901-5027(88)80047-x.
|
| [8] |
Palomino-Zorrilla JJ, Córdova-Limaylla NE, Rosas-Díaz JC,et al. Jawbone quality classification in dental implant planning and placement studies. A scoping review[J]. J Int Soc Prev Community Dent, 2024, 14(2):89-97. DOI: 10.4103/jispcd.JISPCD_4_22.
|
| [9] |
Troiano G, Rapani A, Fanelli F,et al. Inter and intra-operator reliability of Lekholm and Zarb classification and proposal of a novel radiomic data-driven clustering for qualitative assessment of edentulous alveolar ridges [J]. Clin Oral Implants Res, 2024, 35(7):729-738. DOI: 10.1111/clr.14271.
|
| [10] |
Goiato MC, dos Santos DM, Santiago JF Jr,et al. Longevity of dental implants in type Ⅳ bone:A systematic review [J]. Int J Oral Maxillofac Surg, 2014, 43(9):1108-1116. DOI: 10.1016/j.ijom.2014.02.016.
|
| [11] |
Carneiro ALE, Reis INR, Bitencourt FV,et al. Accuracy of linear measurements for implant planning based on low-dose cone beam CT protocols:A systematic review and Meta-analysis [J]. Dentomaxillofac Radiol, 2024, 53(4):207-221. DOI: 10.1093/dmfr/twae007.
|
| [12] |
Macrì M, D'Albis V, D'Albis G,et al. The role and applications of artificial intelligence in dental implant planning:A systematic review [J]. Bioengineering (Basel), 2024, 11(8):778. DOI: 10.3390/bioengineering11080778.
|
| [13] |
Gong Z, Li X, Shi M,et al. Measuring the binary thickness of buccal bone of anterior maxilla in low-resolution cone-beam computed tomography via a bilinear convolutional neural network [J]. Quant Imaging Med Surg, 2023, 13(12):8053-8066. DOI: 10.21037/qims-23-744.
|
| [14] |
Lin Y, Shi M, Xiang D,et al. Construction of an end-to-end regression neural network for the determination of a quantitative index sagittal root inclination [J]. J Periodontol, 2022, 93(12):1951-1960. DOI: 10.1002/jper.21-0492.
|
| [15] |
Kim YH, Shin JY, Lee A,et al. Automated cortical thickness measurement of the mandibular condyle head on CBCT images using a deep learning method [J]. Sci Rep, 2021, 11(1):14852. DOI: 10.1038/s41598-021-94362-7.
|
| [16] |
Kim SH, Kim J, Yang S,et al. Automatic and quantitative measurement of alveolar bone level in OCT images using deep learning [J]. Biomed Opt Express, 2022, 13(10):5468-5482. DOI: 10.1364/boe.468212.
|
| [17] |
Liu H, Duan J, Zeng P,et al. Intelligently quantifying the entire irregular dental structure [J]. J Dent Res, 2024, 103(4):378-387. DOI: 10.1177/00220345241226871.
|
| [18] |
|
| [19] |
Ayzenberg V, Sener SB, Novick K,et al. Fast and robust visual object recognition in young children [J]. Sci Adv, 2025, 11(27):eads6821. DOI: 10.1126/sciadv.ads6821.
|
| [20] |
Petersen LB, Olsen KR, Christensen J,et al. Image and surgery-related costs comparing cone beam CT and panoramic imaging before removal of impacted mandibular third molars [J]. Dentomaxillofac Radiol, 2014, 43(6):20140001. DOI: 10.1259/dmfr.20140001.
|
| [21] |
Kim YH, Lee C, Han SS,et al. Quantitative analysis of metal artifact reduction using the auto-edge counting method in cone-beam computed tomography [J]. Sci Rep, 2020, 10(1):8872. DOI: 10.1038/s41598-020-65644-3.
|
| [22] |
Cheplygina V, de Bruijne M, Pluim JPW. Not-so-supervised:A survey of semi-supervised,multi-instance,and transfer learning in medical image analysis [J]. Med Image Anal, 2019, 54:280-296. DOI: 10.1016/j.media.2019.03.009.
|
| [23] |
Kim HE, Cosa-Linan A, Santhanam N,et al. Transfer learning for medical image classification:A literature review [J]. BMC Med Imaging, 2022, 22(1):69. DOI: 10.1186/s12880-022-00793-7.
|
| [24] |
Shi M, Gong Z, Zeng P,et al. Multi-quantifying maxillofacial traits via a demographic parity-based AI model [J]. BME Front, 2024, 5:0054. DOI: 10.34133/bmef.0054.
|
| [25] |
Park CS, Kang SR, Kim JE,et al. Validation of bone mineral density measurement using quantitative CBCT image based on deep learning [J]. Sci Rep, 2023, 13(1):11921. DOI: 10.1038/s41598-023-38943-8.
|
| [26] |
Bardhan S, Nagar G, Adapala K,et al. Validation of an AI model for automated detection of alveolar bone changes post-orthodontics using cone-beam computed tomography[J]. Cureus, 2025, 17(10):e94809. DOI: 10.7759/cureus.94809.
|
| [27] |
Çoban G, Öztürk T, Hashimli N,et al. Comparison between cephalometric measurements using digital manual and web-based artificial intelligence cephalometric tracing software [J]. Dental Press J Orthod, 2022, 27(4):e222112. DOI: 10.1590/2177-6709.27.4.e222112.oar.
|
| [28] |
Jeon S, Lee KC. Comparison of cephalometric measurements between conventional and automatic cephalometric analysis using convolutional neural network [J]. Prog Orthod, 2021, 22(1):14. DOI: 10.1186/s40510-021-00358-4.
|
| [29] |
Cha JY, Yoon HI, Yeo IS,et al. Peri-implant bone loss measurement using a region-based convolutional neural network on dental periapical radiographs [J]. J Clin Med, 2021, 10(5):1009. DOI: 10.3390/jcm10051009.
|
| [30] |
Hao J, Nalley A, Yeung AWK,et al. Characteristics,licensing,and ethical considerations of openly accessible oral-maxillofacial imaging datasets:A systematic review [J]. NPJ Digit Med, 2025, 8(1):412. DOI: 10.1038/s41746-025-01818-5.
|
| [31] |
Vilcapoma P, Parra Meléndez D, Fernández A,et al. Comparison of Faster R-CNN,YOLO,and SSD for third molar angle detection in dental panoramic X-rays [J]. Sensors (Basel), 2024, 24(18):6053. DOI: 10.3390/s24186053.
|
| [32] |
Widiasri M, Arifin AZ, Suciati N,et al. Dental-YOLO:Alveolar bone and mandibular canal detection on cone beam computed tomography images for dental implant planning[J]. IEEE Access, 2022, 10:101483-101494. DOI: 10.1109/ACCESS.2022.3208350.
|
| [33] |
Chen CC, Wu YF, Aung LM,et al. Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence [J]. J Dent Sci, 2023, 18(3):1301-1309. DOI: 10.1016/j.jds.2023.03.020.
|
| [34] |
Nguyen KT, Le BM, Li M,et al. Localization of cementoenamel junction in intraoral ultrasonographs with machine learning [J]. J Dent, 2021, 112:103752. DOI: 10.1016/j.jdent.2021.103752.
|
| [35] |
Liu T, Ye Y, Liu C,et al. Key-point based automated diagnosis for alveolar dehiscence in mandibular incisors using convolutional neural network [J]. Biomedical Signal Processing and Control, 2023, 85:105082. DOI: 10.1016/j.bspc.2023.105082.
|
| [36] |
Kazerouni A, Aghdam EK, Heidari M,et al. Diffusion models in medical imaging:A comprehensive survey [J]. Med Image Anal, 2023, 88:102846. DOI: 10.1016/j.media.2023.102846.
|
| [37] |
Te Lin Y, Li C, Korostoff J,et al. Three-dimensional digital quantitative analysis of periodontal and peri-implant phenotype:A narrative review [J]. Periodontol 2000, 2025. DOI: 10.1111/prd.12639.
|
| [38] |
Yang L, Zhu Z, Li Y,et al. Clinical-oriented 3D visualization and quantitative analysis of gingival thickness using convolutional neural networks and CBCT[J]. Front Dent Med, 2025, 6:1635155. DOI: 10.3389/fdmed.2025.1635155.
|
| [39] |
Chen YC, Chen L, Lai YL,et al. AI-driven detection and measurement of keratinized gingiva in dental photographs:Validation using reference retainers [J]. J Clin Periodontol, 2025, 52(7):1056-1067. DOI: 10.1111/jcpe.14164.
|