[1] |
Zhang W, Zhou X, Yao Q,et al. HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells[J]. Am J Physiol Renal Physiol,2017,313(4):F906-F913. DOI: 10.1152/ajprenal.00178.2017.
|
[2] |
Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics[J]. Oncogene,2010,29(5):625-634. DOI: 10.1038/onc.2009.441.
|
[3] |
Wang Y, Yin K, Tian J,et al. Granulocytic Myeloid-Derived Suppressor Cells Promote the Stemness of Colorectal Cancer Cells through Exosomal S100A9[J]. Adv Sci(Weinh),2019,6(18):1901278. DOI: 10.1002/advs.201901278.
|
[4] |
Liu W, Li L, Rong Y,et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J]. Acta Biomater,2020,103:196-212. DOI: 10.1016/j.actbio.2019.12.020.
|
[5] |
Liu W, Rong Y, Wang J,et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation,2020,17(1):47. DOI: 10.1186/s12974-020-1726-7.
|
[6] |
Luo W, Hu H, Chang R,et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J]. Cell,2011,145(5):732-744. DOI: 10.1016/j.cell.2011.03.054.
|
[7] |
Wei Y, Wang D, Jin F,et al. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23[J]. Nat Commun,2017,8:14041. DOI: 10.1038/ncomms14041.
|
[8] |
Ruan XF, Ju CW, Shen Y,et al. Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro[J]. Acta Pharmacol Sin,2018,39(4):569-578. DOI: 10.1038/aps.2018.19.
|
[9] |
Dorayappan K, Wanner R, Wallbillich JJ,et al. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype:a novel mechanism linking STAT3/Rab proteins[J]. Oncogene,2018,37(28):3806-3821. DOI: 10.1038/s41388-018-0189-0.
|
[10] |
Zhu J, Lu K, Zhang N,et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J]. Artif Cells Nanomed Biotechnol,2018,46(8):1659-1670. DOI: 10.1080/21691401.2017.1388249.
|
[11] |
Chen J, Chen J, Cheng Y,et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther,2020,11(1):97. DOI: 10.1186/s13287-020-01610-0.
|
[12] |
Zhu LP, Tian T, Wang JY,et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction[J]. Theranostics,2018,8(22):6163-6177. DOI: 10.7150/thno.28021.
|
[13] |
Sun XH, Wang X, Zhang Y,et al. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway[J]. Thromb Res,2019,177:23-32. DOI: 10.1016/j.thromres.2019.02.002.
|
[14] |
Wang Y, Zhao R, Liu D,et al. Exosomes Derived from miR-214-Enriched Bone Marrow-Derived Mesenchymal Stem Cells Regulate Oxidative Damage in Cardiac Stem Cells by Targeting CaMKII[J]. Oxid Med Cell Longev,2018,2018:4971261. DOI: 10.1155/2018/4971261.
|
[15] |
Zou L, Ma X, Wu B,et al. Protective effect of bone marrow mesenchymal stem cell-derived exosomes on cardiomyoblast hypoxia-reperfusion injury through the miR-149/let-7c/Faslg axis[J]. Free Radic Res,2020,54(10):722-731. DOI: 10.1080/10715762.2020.1837793.
|
[16] |
Luo Q, Guo D, Liu G,et al. Exosomes from MiR-126-Overexpressing Adscs Are Therapeutic in Relieving Acute Myocardial Ischaemic Injury[J]. Cell Physiol Biochem,2017,44(6):2105-2116. DOI: 10.1159/000485949.
|
[17] |
Gray WD, French KM, Ghosh-Choudhary S,et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology[J]. Circ Res,2015,116(2):255-263. DOI: 10.1161/CIRCRESAHA.116.304360.
|
[18] |
Agarwal U, George A, Bhutani S,et al. Experimental,Systems,and Computational Approaches to Understanding the MicroRNA-Mediated Reparative Potential of Cardiac Progenitor Cell-Derived Exosomes From Pediatric Patients[J]. Circ Res,2017,120(4):701-712. DOI: 10.1161/CIRCRESAHA.116.309935.
|
[19] |
Yang Y, Li Y, Chen X,et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia[J]. J Mol Med(Berl),2016,94(6):711-724. DOI: 10.1007/s00109-016-1387-2.
|
[20] |
Zhang J, Ma J, Long K,et al. Overexpression of Exosomal Cardioprotective miRNAs Mitigates Hypoxia-Induced H9c2 Cells Apoptosis[J]. Int J Mol Sci,2017,18(4):711. DOI: 10.3390/ijms18040711.
|
[21] |
Wang Y, Zhao R, Liu W,et al. Exosomal circHIPK3 Released from Hypoxia-Pretreated Cardiomyocytes Regulates Oxidative Damage in Cardiac Microvascular Endothelial Cells via the miR-29a/IGF-1 Pathway[J]. Oxid Med Cell Longev,2019,2019:7954657. DOI: 10.1155/2019/7954657.
|
[22] |
Li ZL, Lv LL, Tang TT,et al. HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation[J]. Kidney Int,2019,95(2):388-404. DOI: 10.1016/j.kint.2018.09.013.
|
[23] |
Yu W, Zeng H, Chen J,et al. miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury[J]. Clin Sci(Lond),2020,134(16):2223-2234. DOI: 10.1042/CS20200288.
|
[24] |
de Jong OG, van Balkom BWM, Gremmels H,et al. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2[J]. J Cell Mol Med,2016,20(2):342-350. DOI: 10.1111/jcmm.12730.
|
[25] |
Zhang M, Xin W, Ma C,et al. Exosomal 15-LO2 mediates hypoxia-induced pulmonary artery hypertension in vivo and in vitro[J]. Cell Death Dis,2018,9(10):1022. DOI: 10.1038/s41419-018-1073-0.
|
[26] |
Loyer X, Zlatanova I, Devue C,et al. Intra-Cardiac Release of Extracellular Vesicles Shapes Inflammation Following Myocardial Infarction[J]. Circ Res,2018,123(1):100-106. DOI: 10.1161/CIRCRESAHA.117.311326.
|
[27] |
Li H, Liao Y, Gao L,et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway[J]. Theranostics,2018,8(8):2079-2093. DOI: 10.7150/thno.21895.
|
[28] |
Foglio E, Puddighinu G, Fasanaro P,et al. Exosomal clusterin,identified in the pericardial fluid,improves myocardial performance following MI through epicardial activation,enhanced arteriogenesis and reduced apoptosis[J]. Int J Cardiol,2015,197:333-347. DOI: 10.1016/j.ijcard.2015.06.008.
|
[29] |
Dominguez JH, Liu Y, Gao H,et al. Renal Tubular Cell-Derived Extracellular Vesicles Accelerate the Recovery of Established Renal Ischemia Reperfusion Injury[J]. J Am Soc Nephrol,2017,28(12):3533-3544. DOI: 10.1681/ASN.2016121278.
|
[30] |
Guo H, Zhao L, Wang B,et al. Remote limb ischemic postconditioning protects against cerebral ischemia-reperfusion injury by activating AMPK-dependent autophagy[J]. Brain Res Bull,2018,139:105-113. DOI: 10.1016/j.brainresbull.2018.02.013.
|
[31] |
Minghua W, Zhijian G, Chahua H,et al. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24[J]. Cell Death Dis,2018,9(3):320. DOI: 10.1038/s41419-018-0274-x.
|
[32] |
Ueno K, Samura M, Nakamura T,et al. Increased plasma VEGF levels following ischemic preconditioning are associated with downregulation of miRNA-762 and miR-3072-5p[J]. Sci Rep,2016,6:36758. DOI: 10.1038/srep36758.
|
[33] |
Jia P, Wu X, Dai Y,et al. MicroRNA-21 Is Required for Local and Remote Ischemic Preconditioning in Multiple Organ Protection Against Sepsis[J]. Crit Care Med,2017,45(7):e703-e710. DOI: 10.1097/CCM.0000000000002363.
|
[34] |
Pan T, Jia P, Chen N,et al. Delayed Remote Ischemic Preconditioning ConfersRenoprotection against Septic Acute Kidney Injury via Exosomal miR-21[J]. Theranostics,2019,9(2):405-423. DOI: 10.7150/thno.29832.
|
[35] |
Yamaguchi T, Izumi Y, Nakamura Y,et al. Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction[J]. Int J Cardiol,2015,178:239-246. DOI: 10.1016/j.ijcard.2014.10.144.
|
[36] |
Xiao B, Chai Y, Lv S,et al. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury[J]. Int J Mol Med,2017,40(4):1201-1209. DOI: 10.3892/ijmm.2017.3106.
|
[37] |
Jiang Y, Xie H, Tu W,et al. Exosomes secreted by HUVECs attenuate hypoxia/reoxygenation-induced apoptosis in neural cells by suppressing miR-21-3p[J]. Am J Transl Res,2018,10(11):3529-3541.
|
[38] |
Yuan X, Wu Q, Wang P,et al. Exosomes Derived From Pericytes Improve Microcirculation and Protect Blood-Spinal Cord Barrier After Spinal Cord Injury in Mice[J]. Front Neurosci,2019,13:319. DOI: 10.3389/fnins.2019.00319.
|
[39] |
Luo Z, Wu F, Xue E,et al. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival by inducing HIF-1α in injured neuronal cells derived exosomes culture system[J]. Cell Death Dis,2019,10(2):134. DOI: 10.1038/s41419-019-1410-y.
|
[40] |
Cui GH, Wu J, Mou FF,et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J,2018,32(2):654-668. DOI: 10.1096/fj.201700600R.
|
[41] |
Han YD, Bai Y, Yan XL,et al. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting[J]. Biochem Biophys Res Commun,2018,497(1):305-312. DOI: 10.1016/j.bbrc.2018.02.076.
|
[42] |
Tan Y, Nie W, Chen C,et al. Mesenchymal stem cells alleviate hypoxia-induced oxidative stress and enhance the pro-survival pathways in porcine islets[J]. Exp Biol Med(Maywood),2019,244(9):781-788. DOI: 10.1177/1535370219844472.
|
[43] |
Yi L, Ju Y, He Y,et al. Intraperitoneal injection of Desferal? alleviated the age-related bone loss and senescence of bone marrow stromal cells in rats[J]. Stem Cell Res Ther,2021,12(1):45. DOI: 10.1186/s13287-020-02112-9.
|
[44] |
Thankam FG, Chandra I, Diaz C,et al. Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocytes and adipose-derived mesenchymal stem cells[J]. Mol Cell Biochem,2020,465(1-2):75-87. DOI: 10.1007/s11010-019-03669-7.
|
[45] |
Chang CL, Sung PH, Chen KH,et al. Adipose-derived mesenchymal stem cell-derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome[J]. Am J Transl Res,2018,10(4):1053-1070.
|
[46] |
Qian M, Chen Z, Guo X,et al. Exosomes derived from hypoxic glioma deliver miR-1246 and miR-10b-5p to normoxic glioma cells to promote migration and invasion[J]. Lab Invest,2021. DOI: 10.1038/s41374-020-00522-0.
|
[47] |
Panigrahi GK, Praharaj PP, Peak TC,et al. Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells[J]. Sci Rep,2018,8(1):3853. DOI: 10.1038/s41598-018-22068-4.
|
[48] |
Patton MC, Zubair H, Khan MA,et al. Hypoxia alters the release and size distribution of extracellular vesicles in pancreatic cancer cells to support their adaptive survival[J]. J Cell Biochem,2020,121(1):828-839. DOI: 10.1002/jcb.29328.
|
[49] |
Yue X, Lan F, Xia T. Hypoxic Glioma Cell-Secreted Exosomal miR-301a Activates Wnt/beta-catenin Signaling and Promotes Radiation Resistance by Targeting TCEAL7[J]. Mol Ther,2019,27(11):1939-1949. DOI: 10.1016/j.ymthe.2019.07.011.
|
[50] |
Qian M, Wang S, Guo X,et al. Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-kappaB pathways[J]. Oncogene,2020,39(2):428-442. DOI: 10.1038/s41388-019-0996-y.
|
[51] |
Li J, Liao T, Liu H,et al. Hypoxic glioma stem cell-derived exosomes containing Linc01060 promote progression of glioma by regulating the MZF1/c-Myc/HIF-1α Axis[J]. Cancer Res,2020. DOI: 10.1158/0008-5472.CAN-20-2270.
|
[52] |
Hsu YL, Hung JY, Chang WA,et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1[J]. Oncogene,2017,36(34):4929-4942. DOI: 10.1038/onc.2017.105.
|
[53] |
Hsu YL, Hung JY, Chang WA,et al. Hypoxic Lung-Cancer-Derived Extracellular Vesicle MicroRNA-103a Increases the Oncogenic Effects of Macrophages by Targeting PTEN[J]. Mol Ther,2018,26(2):568-581. DOI: 10.1016/j.ymthe.2017.11.016.
|
[54] |
Wang D, Zhao C, Xu F,et al. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2[J]. Theranostics,2021,11(6):2860-2875. DOI: 10.7150/thno.51797.
|
[55] |
Berchem G, Noman MZ, Bosseler M,et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer[J]. Oncoimmunology,2016,5(4):e1062968. DOI: 10.1080/2162402X.2015.1062968.
|
[56] |
Li L, Li C, Wang S,et al. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype[J]. Cancer Res,2016,76(7):1770-1780. DOI: 10.1158/0008-5472.CAN-15-1625.
|
[57] |
Li L, Cao B, Liang X,et al. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes[J]. Oncogene,2019,38(15):2830-2843. DOI: 10.1038/s41388-018-0627-z.
|
[58] |
Huang Z, Yang M, Li Y,et al. Exosomes Derived from Hypoxic Colorectal Cancer Cells Transfer Wnt4 to Normoxic Cells to Elicit a Prometastatic Phenotype[J]. Int J Biol Sci,2018,14(14):2094-2102. DOI: 10.7150/ijbs.28288.
|
[59] |
Yang H, Zhang H, Yang Y,et al. Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis[J]. Theranostics,2020,10(18):8211-8226. DOI: 10.7150/thno.44419.
|
[60] |
Hu X, Mu Y, Liu J,et al. Exosomes Derived from Hypoxic Colorectal Cancer Cells Transfer miR-410-3p to Regulate Tumor Progression[J]. J Cancer,2020,11(16):4724-4735. DOI: 10.7150/jca.33232.
|
[61] |
Sruthi TV, Edatt L, Raji GR,et al. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis[J]. J Cell Physiol,2018,233(4):3498-3514. DOI: 10.1002/jcp.26202.
|
[62] |
Yu Y, Min Z, Zhou Z,et al. Hypoxia-induced exosomes promote hepatocellular carcinoma proliferation and metastasis via miR-1273f transfer[J]. Exp Cell Res,2019,385(1):111649. DOI: 10.1016/j.yexcr.2019.111649.
|
[63] |
Guo Z, Wang X, Yang Y,et al. Hypoxic Tumor-Derived Exosomal Long Noncoding RNA UCA1 Promotes Angiogenesis via miR-96-5p/AMOTL2 in Pancreatic Cancer[J]. Mol Ther Nucleic Acids,2020,22:179-195. DOI: 10.1016/j.omtn.2020.08.021.
|
[64] |
Zhang X, Gao F, Zhou L,et al. UCA1 Regulates the Growth and Metastasis of Pancreatic Cancer by Sponging miR-135a[J]. Oncol Res,2017,25(9):1529-1541. DOI: 10.3727/096504017X14888987683152.
|
[65] |
Wang X, Luo G, Zhang K,et al. Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kgamma to Promote Pancreatic Cancer Metastasis[J]. Cancer Res,2018,78(16):4586-4598. DOI: 10.1158/0008-5472.CAN-17-3841.
|
[66] |
Horie K, Kawakami K, Fujita Y,et al. Exosomes expressing carbonic anhydrase 9 promote angiogenesis[J]. Biochem Biophys Res Commun,2017,492(3):356-361. DOI: 10.1016/j.bbrc.2017.08.107.
|
[67] |
Xue M, Chen W, Xiang A,et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1[J]. Mol Cancer,2017,16(1):143. DOI: 10.1186/s12943-017-0714-8.
|
[68] |
Xue M, Pang H, Li X,et al. Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway[J]. Cancer Sci,2016,107(1):18-27. DOI: 10.1111/cas.12844.
|
[69] |
Zhou CF, Ma J, Huang L,et al. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1[J]. Oncogene,2019,38(8):1256-1268. DOI: 10.1038/s41388-018-0511-x.
|
[70] |
Deep G, Jain A, Kumar A,et al. Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches[J]. Mol Carcinog,2020,59(3):323-332. DOI: 10.1002/mc.23157.
|
[71] |
Miro C, Di Cicco E, Ambrosio R,et al. Thyroid hormone induces progression and invasiveness of squamous cell carcinomas by promoting a ZEB-1/E-cadherin switch[J]. Nat Commun,2019,10(1):5410. DOI: 10.1038/s41467-019-13140-2.
|
[72] |
Zhang X, Sai B, Wang F,et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT[J]. Mol Cancer,2019,18(1):40. DOI: 10.1186/s12943-019-0959-5.
|
[73] |
Saravanan PB, Vasu S, Yoshimatsu G,et al. Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress[J]. Diabetologia,2019,62(10):1901-1914. DOI: 10.1007/s00125-019-4950-x.
|
[74] |
Gonzalez-King H, García NA, Ontoria-Oviedo I,et al. Hypoxia Inducible Factor-1α Potentiates Jagged 1-Mediated Angiogenesis by Mesenchymal Stem Cell-Derived Exosomes[J]. Stem Cells,2017,35(7):1747-1759. DOI: 10.1002/stem.2618.
|
[75] |
Patil SM, Sawant SS, Kunda NK. Exosomes as drug delivery systems:A brief overview and progress update[J]. Eur J Pharm Biopharm,2020,154:259-269. DOI: 10.1016/j.ejpb.2020.07.026.
|
[76] |
Jung KO, Jo H, Yu JH,et al. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes[J]. Biomaterials,2018,177:139-148. DOI: 10.1016/j.biomaterials.2018.05.048.
|
[77] |
Ullrich N, Schröder A, Bauer M,et al. The role of HIF-1α in nicotine-induced root and bone resorption during orthodontic tooth movement[J]. Eur J Orthod,2020. DOI: 10.1093/ejo/cjaa057.
|