切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 230 -236. doi: 10.3877/cma.j.issn.1674-1366.2024.04.003

论著

高压蒸汽灭菌次数对钛基底-聚醚醚酮种植扫描杆扫描准确度的影响
谢馨1, 李一鸣2, 胡晓均1, 邓飞龙1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广东省口腔疾病临床医学研究中心,广州 510055
    2. 中山大学附属第七医院口腔科,深圳 518107
  • 收稿日期:2024-04-26 出版日期:2024-08-01
  • 通信作者: 邓飞龙

Effect of pressure steam sterilization times on the trueness of the polyetheretherketone-Ti scanbody scanning data

Xin Xie1, Yiming Li2, Xiaojun Hu1, Feilong Deng1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangzhou 510055, China
    2. Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
  • Received:2024-04-26 Published:2024-08-01
  • Corresponding author: Feilong Deng
引用本文:

谢馨, 李一鸣, 胡晓均, 邓飞龙. 高压蒸汽灭菌次数对钛基底-聚醚醚酮种植扫描杆扫描准确度的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 230-236.

Xin Xie, Yiming Li, Xiaojun Hu, Feilong Deng. Effect of pressure steam sterilization times on the trueness of the polyetheretherketone-Ti scanbody scanning data[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(04): 230-236.

目的

比较分析高压蒸汽灭菌次数对钛基底-聚醚醚酮(PEEK-Ti)种植扫描杆扫描准确度的影响。

方法

制备右上第一磨牙区内嵌有1个种植体口扫代型的上颌石膏模型1副,选择未经使用的PEEK-Ti种植体水平内锥形连接单牙扫描杆1个,以10 N·cm力矩安装到石膏模型的口扫代型上,作为本项研究的"参考模型"。使用三维牙颌模型扫描仪对参考模型进行重复扫描,获取"参考模型数据";同时使用口内扫描仪对"参考模型"进行重复扫描,获取"未拆卸组-测试模型数据";卸下扫描杆,分别经0、10、20、30、40、…、100次高压蒸汽灭菌后,再以10 N·cm力矩重新安装到石膏模型的口扫代型上进行重复扫描,并获取第0、10、20、30、40、…、100次高压蒸汽灭菌的测试模型数据,分别命名为:"灭菌组-测试模型数据(0、10、20、30、40、…、100)",共对扫描杆进行了100次的高压蒸汽灭菌。将各组别数据导入三维测量软件(Geomagic Control X 2020,3D systems,美国),使用重复测量单因素方差分析进行分析评估,显著性水平设定为α = 0.05。

结果

PEEK-Ti种植扫描杆随着灭菌次数的增加,线性误差值为4.3 ~ 7.0 μm(F = 1.363,P = 0.210);角度误差值为0.101° ~ 0.131°(F = 1.339,P = 0.222);三维误差(扫描杆一致性)值为10.8 ~ 12.0 μm(F = 1.532,P = 0.141),各组间差异均无统计学意义。

结论

高压蒸汽灭菌次数对PEEK-Ti种植扫描杆的外形改变及其获取数字化印模数据的准确度没有显著影响,经高压蒸汽灭菌100次后的PEEK-Ti种植扫描杆仍可满足临床数字化印模的需求。

Objective

To compare and analyze the effect of pressure steam sterilization times on the trueness of the polyetheretherketone-Ti (PEEK-Ti) scanbody scanning data.

Methods

A maxilla stone master model with one analog at the right first molar was fabricated. A brand-new PEEK-Ti scanbody was installed with 10 N·cm torque onto the analog as the "reference model". The reference model was then scanned with a dental laboratory scanner (D2000) to obtain the "reference model scanning data". A total of 10 repeated scans were obtained with an intraoral scanner and referred as the group of "no scanbody unscrew". The scanbody was reinstalled with consistent torques and obtained 10 repeated scans which referred as the group of "no sterilization". The scanbody was reinstalled with consistent torques after each sterilization cycle repeated for 10 times, and 10 repeated scans were obtained which referred as the group of " (10, 20, 30, 40, …, 100) sterilization". Totally 10 sterilization cycles were repeated. The files were imported into inspection software for assessment. Repeated-measures One-Way ANOVA was used to assess the values. The significance level was set at α = 0.05.

Results

With the increase in the number of times of pressure steam sterilization, the linear deviation of the PEEK-Ti scanbody was 4.3-7.0 μm (F = 1.363, P = 0.210) ; the angular deviation of the PEEK-Ti scanbody was 0.101°-0.131° (F = 1.339, P = 0.222) ; the congruence of the PEEK-Ti scanbody was 10.8-12.0 μm (F = 1.532, P = 0.141). There was no statistically significant difference between groups.

Conclusions

For the PEEK-Ti scanbody tested in the present study, the sterilization did not significantly influence the trueness of single-implant digital impressions and the scanbody congruence. After 100 times of pressure steamsterilization, the trueness of the PEEK-Ti scanbody scanning data can still meet clinical needs.

图1 制备用于体外研究测试的模型 A:制备右上第一磨牙区内嵌有1个种植体口扫代型的上颌石膏模型;B:在石膏模型的口扫代型上,安装1个未经使用的钛基底-聚醚醚酮(PEEK-Ti)扫描杆作为参考模型。
图2 使用三维牙颌模型扫描仪重复扫描参考模型,获取参考模型数据
图3 扫描杆网格数据与扫描杆数据库一致性检测 A:厂商提供的"扫描杆数据库";B:参考模型数据;C:采用最佳拟合算法进行扫描杆对齐;D:扫描杆最佳拟合对齐后的三维比较图。
图4 参考模型数据对齐组数据与未拆卸组-测试模型数据对齐组数据进行拟合对齐 A:导入参考模型数据对齐组数据;B:导入未拆卸组-测试模型数据对齐组数据;C:选择最佳拟合算法,选取扫描杆邻近的2颗天然牙(红色区域)为对齐区域,进行两两重叠对齐。
图5 对钛基底-聚醚醚酮(PEEK-Ti)种植扫描杆经高压蒸汽灭菌循环后扫描的准确度进行体外研究测试的操作流程图
表1 钛基底-聚醚醚酮(PEEK-Ti)种植扫描杆经高压蒸汽灭菌循环后扫描准确度比较( ± s
[1]
Goracci CFranchi LVichi A,et al. Accuracy,reliability,and efficiency of intraoral scanners for full-arch impressions:A systematic review of the clinical evidence[J]. Eur J Orthod201638(4):422-428. DOI:10.1093/ejo/cjv077.
[2]
Gallardo YRBohner LTortamano P,et al. Patient outcomes and procedure working time for digital versus conventional impressions:A systematic review[J]. J Prosthet Dent2018119(2):214-219. DOI:10.1016/j.prosdent.2017.07.007.
[3]
Joda TBrägger U. Patient-centered outcomes comparing digital and conventional implant impression procedures:A randomized crossover trial[J]. Clin Oral Implants Res201627(12):e185-e189. DOI:10.1111/clr.12600.
[4]
Mizumoto RMYilmaz B. Intraoral scan bodies in implant dentistry:A systematic review[J]. J Prosthet Dent2018120(3):343-352. DOI:10.1016/j.prosdent.2017.10.029.
[5]
Huang RLiu YHuang B,et al. Improved scanning accuracy with newly designed scan bodies:An in vitro study comparing digital versus conventional impression techniques for complete-arch implant rehabilitation[J]. Clin Oral Implants Res202031(7):625-633. DOI:10.1111/clr.13598.
[6]
Arcuri LPozzi ALio F,et al. Influence of implant scanbody material,position and operator on the accuracy of digital impression for complete-arch:A randomized in vitro trial[J]. J Prosthodont Res202064(2):128-136. DOI:10.1016/j.jpor.2019.06.001.
[7]
Tan JZHTan MYSee Toh YL,et al. Three-dimensional positional accuracy of intraoral and laboratory implant scan bodies[J]. J Prosthet Dent2022128(4):735-744. DOI:10.1016/j.prosdent.2020.09.057.
[8]
Arcuri LLio FCampana V,et al. Influence of implant scanbody wear on the accuracy of digital impression for complete-arch:A randomized in vitro trial[J]. Materials(Basel)202215(3):927. DOI:10.3390/ma15030927.
[9]
Kumar AYap WTFoo SL,et al. Effects of sterilization cycles on PEEK for medical device application[J]. Bioengineering (Basel)20185(1):18. DOI:10.3390/bioengineering5010018.
[10]
Diker ETerzioglu HGouveia DNM,et al. Effect of material type,torque value,and sterilization on linear displacements of a scan body:An in vitro study[J]. Clin Implant Dent Relat Res202325(2):419-425. DOI:10.1111/cid.13187.
[11]
戚仕涛,汤黎明,王羽.压力蒸汽灭菌设备质量控制技术和实例[J].医学研究生学报200821(4):446-448. DOI:10.3969/j.issn.1008-8199.2008.04.032.
[12]
贾佳,王亚飞.口腔器械常用消毒灭菌方法效果比较[J].护理学杂志201631(22):85-86. DOI:10.3870/j.issn.1001-4152.2016.22.085.
[13]
Vandeweghe SVervack VDierens M,et al. Accuracy of digital impressions of multiple dental implants:An in vitro study[J]. Clin Oral Implants Res201728(6):648-653. DOI:10.1111/clr.12853.
[14]
van der Meer WJAndriessen FSWismeijer D,et al. Application of intra-oral dental scanners in the digital workflow of implantology[J]. PLoS One20127(8):e43312. DOI:10.1371/journal.pone.0043312.
[15]
Revilla-León MSubramanian SGAtt W,et al. Analysis of different illuminance of the room lighting condition on the accuracy(trueness and precision)of an intraoral scanner[J]. J Prosthodont202130(2):157-162. DOI:10.1111/jopr.13276.
[16]
Revilla-León MMethani MMÖzcan M. Impact of the ambient light illuminance conditions on the shade matching capabilities of an intraoral scanner[J]. J Esthet Restor Dent202133(6):906-912. DOI:10.1111/jerd.12662.
[17]
Lim JHPark JMKim M,et al. Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience[J]. J Prosthet Dent2018119(2):225-232. DOI:10.1016/j.prosdent.2017.05.002.
[18]
Mangano FGAdmakin OBonacina M,et al. Trueness of 12 intraoral scanners in the full-arch implant impression:A comparative in vitro study[J]. BMC Oral Health202020(1):263. DOI:10.1186/s12903-020-01254-9.
[19]
Mangano FGHauschild UVeronesi G,et al. Trueness and precision of 5 intraoral scanners in the impressions of single and multiple implants:A comparative in vitro study[J]. BMC Oral Health201919(1):101. DOI:10.1186/s12903-019-0792-7.
[20]
Zhang XYCao YHu ZW,et al. Scanning accuracy of 10 intraoral scanners for single-crown and three-unit fixed denture preparations:An in vitro study[J]. Chin J Dent Res202225(3):215-222. DOI:10.3290/j.cjdr.b3317959.
[21]
Mizumoto RMAlp GÖzcan M,et al. The effect of scanning the palate and scan body position on the accuracy of complete-arch implant scans[J]. Clin Implant Dent Relat Res201921(5):987-994. DOI:10.1111/cid.12821.
[22]
Pattamavilai SOngthiemsak C. Accuracy of intraoral scanners in different complete arch scan patterns[J]. J Prosthet Dent2024131(1):155-162. DOI:10.1016/j.prosdent.2021.12.026.
[23]
Li ZHuang RWu X,et al. Effect of scan pattern on the accuracy of complete-arch digital implant impressions with two intraoral scanners[J]. Int J Oral Maxillofac Implants202237(4):731-739. DOI:10.11607/jomi.9248.
[24]
Pan YTsoi JKHLam WYH,et al. Does the geometry of scan bodies affect the alignment accuracy of computer-aided design in implant digital workflow:An in vitro study?[J]. Clin Oral Implants Res202233(3):313-321. DOI:10.1111/clr.13890.
[25]
Mizumoto RMYilmaz BMcGlumphy EA Jr,et al. Accuracy of different digital scanning techniques and scan bodies for complete-arch implant-supported prostheses[J]. J Prosthet Dent2020123(1):96-104. DOI:10.1016/j.prosdent.2019.01.003.
[26]
Dutton ELudlow MMennito A,et al. The effect different substrates have on the trueness and precision of eight different intraoral scanners[J]. J Esthet Restor Dent202032(2):204-218. DOI:10.1111/jerd.12528.
[27]
Bocklet CRenne WMennito A,et al. Effect of scan substrates on accuracy of 7 intraoral digital impression systems using human maxilla model[J]. Orthod Craniofac Res201922(Suppl 1):168-174. DOI:10.1111/ocr.12273.
[28]
Wu HKChen GHuang X,et al. Accuracy of single-implant digital impression with various scanbody exposure levels at anterior and posterior regions[J]. J Dent2023138:104641. DOI:10.1016/j.jdent.2023.104641.
[29]
Sequeira VHarper MTLilly CL,et al. Accuracy of digital impressions at varying implant depths:An in vitro study[J]. J Prosthodont202332(1):54-61. DOI:10.1111/jopr.13496.
[30]
Laohverapanich KLuangchana PAnunmana C,et al. Different implant subgingival depth affects the trueness and precision of the 3D dental implant position:A comparative in vitro study among five digital scanners and a conventional technique[J]. Int J Oral Maxillofac Implants202136(6):1111-1120. DOI:10.11607/jomi.9014.
[31]
Lyu MDi PLin Y,et al. Accuracy of impressions for multiple implants:A comparative study of digital and conventional techniques[J]. J Prosthet Dent2022128(5):1017-1023. DOI:10.1016/j.prosdent.2021.01.016.
[32]
Chen YZhai ZWatanabe S,et al. Understanding the effect of scan spans on the accuracy of intraoral and desktop scanners[J]. J Dent2022124:104220. DOI:10.1016/j.jdent.2022.104220.
[33]
Kim JSon KLee KB. Displacement of scan body during screw tightening:A comparative in vitro study[J]. J Adv Prosthodont202012(5):307-315. DOI:10.4047/jap.2020.12.5.307.
[34]
Dioguardi MSovereto DIlluzzi G,et al. Management of instrument sterilization workflow in endodontics:A systematic review and meta-analysis[J]. Int J Dent2020:5824369. DOI:10.1155/2020/5824369.
[35]
Kato TYasunami NFuruhashi A,et al. Effects of autoclave sterilization and multiple use on implant scanbody deformation in vitro[J]. Materials(Basel)202215(21):7717. DOI:10.3390/ma15217717.
[36]
Choi YDLee KEMai HN,et al. Effects of scan body exposure and operator on the accuracy of image matching of implant impressions with scan bodies[J]. J Prosthet Dent2020124(3):379.e1-379.e6. DOI:10.1016/j.prosdent.2020.04.004.
[37]
Bhering CLTakahashi JMLuthi LF,et al. Influence of the casting technique and dynamic loading on screw detorque and misfit of single unit implant-supported prostheses[J]. Acta Odontol Scand201371(3/4):404-409. DOI:10.3109/00016357.2012.690528.
[1] 戴雨霖, 张新春. 人工智能在口腔修复诊疗中的应用与进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 65-69.
[2] 蓝凯文, 孙玥, 江柳霖, 阎英. 口腔修复临床诊疗中口颌系统功能评估的数字化实现[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 265-271.
[3] 张晗之, 丁梦婷, 佘文珺, 焦婷. 骨髓增生异常综合征继发上颌骨坏死患者术后全数字化即刻赝复体制作[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 253-259.
[4] 王焱, 王烟岚. 以始为终:数字化导板在牙列重度磨耗咬合重建序列治疗中的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 233-238.
[5] 王勇, 彭玲燕, 赵一姣. 数字化序列导板技术用于"终末牙列"患者即刻种植即刻修复[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 239-243.
[6] 田陶然, 张陶. 数字化虚拟手术设计在口腔种植临床前教学中的应用展望[J]. 中华口腔医学研究杂志(电子版), 2022, 16(03): 189-193.
[7] 蓝凯文, 戴驰, 聂嘉祺, 刘俊良, 陈琳灵, 阎英. 牙磨耗评价的临床应用和研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 267-271.
[8] 温玉洁, 于世德, 汪竹红, 潘颖菁, 林天赐. 数字化与传统印模应用于瓷贴面修复的随机对照临床研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 148-154.
[9] 宾志文, 梁建锋, 王成, 刘海潮, 胡静, 侯劲松. 应用颌间牵引改善数字化下颌骨缺损重建术后咬合不良[J]. 中华口腔医学研究杂志(电子版), 2021, 15(01): 18-23.
[10] 冀堃, 朱顶贵, 陆伟, 戴丽, 王欣然, 景建龙, 吴国锋. 聚醚酮酮数字化乳牙早失间隙保持器的临床应用观察[J]. 中华口腔医学研究杂志(电子版), 2019, 13(06): 368-372.
[11] 周玉竹, 戚维舒, 冯荣梅, 倪小霞, 林丽婷. 牙科消毒器械派送箱的设计与应用[J]. 中华口腔医学研究杂志(电子版), 2017, 11(04): 249-251.
[12] 高翔. 冷冻保存自体颅骨行颅骨修补术56例临床分析[J]. 中华神经创伤外科电子杂志, 2018, 04(03): 148-150.
[13] 孙明明, 刘菲菲, 欧小华, 胡昌明, 毛琳琳, 赵薇薇. 人全外显子组测序IDT捕获探针的性能验证[J]. 中华临床实验室管理电子杂志, 2020, 08(02): 87-93.
[14] 王文娟, 单志明, 武锦彪, 吕俊霞, 王星, 郦卫星, 陈瑜. 杭州地区29家医疗机构全血细胞计数准确度和一致性调查[J]. 中华临床实验室管理电子杂志, 2018, 06(03): 165-167.
阅读次数
全文


摘要