切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2020, Vol. 14 ›› Issue (01) : 51 -58. doi: 10.3877/cma.j.issn.1674-1366.2020.01.011

所属专题: 口腔医学 文献

综述

锶及海藻酸盐水凝胶在骨组织工程中的研究进展
赵德路1, 铁朝荣2, 孙珍1, 王新2, 尹苗2,()   
  1. 1. 安徽医科大学合肥口腔临床学院·合肥市口腔医院修复科,合肥 230001
    2. 武汉大学中南医院口腔医学中心 430071
  • 收稿日期:2019-10-25 出版日期:2020-02-01
  • 通信作者: 尹苗

Research progress of strontium and alginate hydrogel in bone tissue engineering

Delu Zhao1, Chaorong Tie2, Zhen Sun1, Xin Wang2, Miao Yin2,()   

  1. 1. Department of Prosthodontics, Hefei Stomatological Clinic Hospital, Anhui Medical University & Hefei Stomatological Hospital, Hefei 230001, China
    2. Center of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
  • Received:2019-10-25 Published:2020-02-01
  • Corresponding author: Miao Yin
  • About author:
    Corresponding author: Yin Miao, Email:
  • Supported by:
    National Natural Science Foundation of China(81500899)
引用本文:

赵德路, 铁朝荣, 孙珍, 王新, 尹苗. 锶及海藻酸盐水凝胶在骨组织工程中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2020, 14(01): 51-58.

Delu Zhao, Chaorong Tie, Zhen Sun, Xin Wang, Miao Yin. Research progress of strontium and alginate hydrogel in bone tissue engineering[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2020, 14(01): 51-58.

因炎症、外伤、肿瘤等导致的口腔颌面部骨缺损是常见的骨缺损之一,一直以来都是临床上治疗的难点,给口腔医生带来了重大挑战。目前,骨缺损治疗最有效的是自体骨移植,但存在数量有限、增加患者痛苦等问题。异体骨治疗骨缺损效果也较佳,但异体骨同样存在许多缺点,如免疫排斥、交叉感染等。因此,为了解决骨缺损的治疗难题,骨组织工程应运而生。海藻酸盐具有生物相容性好、可降解等优点,广泛用于骨组织工程;同样锶离子具有促进成骨、成血管的作用,也被广泛应用于骨组织工程。但目前这两者的研究状况没有系统论述,故本文将对锶和海藻酸盐水凝胶在骨组织工程中的研究进行综述。

Oral and maxillofacial bone defects caused by inflammation, trauma, tumors, etc., are one of the common bone defects, and have always been a difficult point of clinical treatment which provides a major challenge for dentists. At present, the most effective treatment for bone defect is autologous bone transplantation, but there are problems such as limited source and increased patient suffering. Allogeneic bone is also effective in treating bone defects, but allogeneic bones also have many disadvantages, for example immune rejection and cross infection. Therefore, in order to solve the treatment problem of bone defects, bone tissue engineering came into being. Sodium alginate has the advantages of good biocompatibility and biodegradability, and is widely used in bone tissue engineering. Similarly, strontium which is also widely used in bone tissue engineering, has the functions of promoting osteogenesis and angiogenesis. However, there is no systematic discussion on these two aspects. This paper will summarize the research of strontium and alginate hydrogels in bone tissue engineering.

[1]
Agarwal R,García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair[J]. Adv Drug Deliv Rev,2015,94:53-62. DOI:10.1016/j.addr.2015.03.013.
[2]
Gruskin E,Doll BA,Futrell FW,et al. Demineralized bone matrix in bone repair:history and use[J]. Adv Drug Deliv Rev,2012,64(12):1063-1077. DOI:10.1016/j.addr.2012.06.008.
[3]
Wei P,Jing W,Yuan Z,et al. Vancomycin- and Strontium-Loaded Microspheres with Multifunctional Activities against Bacteria,in Angiogenesis and in Osteogenesis for Enhancing Infected Bone Regeneration[J]. ACS Appl Mater Interfaces,2019,11(34):30596-30609. DOI:10.1021/acsami.9b10219.
[4]
Li L,Yu F,Zheng L,et al. Natural hydrogels for cartilage regeneration:Modification,preparation and application[J]. J Orthop Translat,2018,17:26-41. DOI:10.1016/j.jot.2018.09.003.
[5]
Wang JL,Mukherjee S,Nisbet DR,et al. In vitro evaluation of biodegradable magnesium alloys containing micro-alloying additions of strontium,with and without zinc[J]. J Mater Chem B,2015,3(45):8874-8883. DOI:10.1039/C5TB01516B.
[6]
Cheng D,Liang Q,Li Y,et al. Strontium incorporation improves the bone-forming ability of scaffolds derived from porcine bone[J]. Colloids Surf B Biointerfaces,2018,162:279-287. DOI:10.1016/j.colsurfb.2017.11.070.
[7]
Riedel C,Zimmermann EA,Zustin J,et al. The incorporation of fluoride and strontium in hydroxyapatite affects the composition,structure,and mechanical properties of human cortical bone[J]. J Biomed Mater Res Part A,2016,105(2):433. DOI:10.1002/jbm.a.35917.
[8]
Place ES,Rojo L,Gentleman E,et al. Strontium- and zinc-alginate hydrogels for bone tissue engineering[J]. Tissue Eng Part A,2011,17(21-22):2713-2722. DOI:10.1089/ten.TEA.2011.0059
[9]
Kargozar S,Montazerian M,Fiume E,et al. Multiple and Promising Applications of Strontium(Sr)-Containing Bioactive Glasses in Bone Tissue Engineering[J]. Front Bioeng Biotechnol,2019,7:161. DOI:10.3389/fbioe.2019.00161.
[10]
胡凯,郝作琦,郝作琦,等.人颞下颌关节关节盘、软骨及下颌骨的纳米弹性性能[J].解放军医学杂志,2002,27(1):24-26. DOI:10.3321/j.issn:0577-7402.2002.01.010.
[11]
薄斌,周树夏.人下颌骨在不同应变率下的压缩强度[J].第四军医大学学报,2000,21(3):261-263. DOI:10.3321/j.issn:1000-2790.2000.03.001.
[12]
Lei Y,Xu Z,Ke Q,et al. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl,2017,72:134-142. DOI:10.1016/j.msec.2016.11.063.
[13]
Roohaniesfahani I,Wang J,No YJ,et al. Modulatory effect of simultaneously released magnesium,strontium,and silicon ions on injectable silk hydrogels for bone regeneration[J]. Mater Sci Eng C Mater Biol Appl,2019,94:976-987. DOI:10.1016/j.msec.2018.10.053.
[14]
Safronov AP,Mikhnevich EA,Lotfollahi Z,et al. Polyacrylamide Ferrogels with Magnetite or Strontium Hexaferrite:Next Step in the Development of Soft Biomimetic Matter for Biosensor Applications[J]. Sensors(Basel),2018,18(1):257. DOI:10.3390/s18010257.
[15]
Salarian M,Xu WZ,Bohay R,et al. Angiogenic Rg1/Sr-Doped TiO2 Nanowire/Poly(Propylene Fumarate)Bone Cement Composites[J]. Macromol Biosci,2017,17(2). DOI:10.1002/mabi.201600156.
[16]
Oh H,Lu AX,Javvaji V,et al. Light-Directed Self-Assembly of Robust Alginate Gels at Precise Locations in Microfluidic Channels[J]. ACS Appl Mater Interfaces,2016,8(27):17529-17538. DOI:10.1021/acsami.6b03826.
[17]
Kaklamani G,Cheneler D,Grover LM,et al. Mechanical properties of alginate hydrogels manufactured using external gelation[J]. J Mech Beha Biomed Mater,2014,36:135-142.DOI:10.1016/j.jmbbm.2014.04.013.
[18]
Arepalli SK,Tripathi H,Hira SK,et al. Enhanced bioactivity,biocompatibility and mechanical behavior of strontium substituted bioactive glasses[J]. Mater Sci Eng C Mater Biol Appl,2016,69:108-116. DOI:10.1016/j.msec.2016.06.070.
[19]
Gao C,Liu H,Luo ZP,et al. Modification of calcium phosphate cement with poly(γ-glutamic acid)and its strontium salt for kyphoplasty application[J]. Mater Sci Eng C Mater Biol Appl,2017,80:352-361. DOI:10.1016/j.msec.2017.05.070.
[20]
Goodarzi H,Hashemi-Najafabadi S,Baheiraei N,et al. Preparation and Characterization of Nanocomposite Scaffolds (Collagen/β-TCP/SrO)for Bone Tissue Engineering[J]. Tissue Eng Regen Med,2019,16(3):237-251. DOI:10.1007/s13770-019-00184-0.
[21]
Shahrouzifar MR,Salahinejad E,Sharifi E. Co-incorporation of strontium and fluorine into diopside scaffolds:Bioactivity,biodegradation and cytocompatibility evaluations[J]. Mater Sci Eng C Mater Biol Appl,2019,103:109752. DOI:10.1016/j.msec.2019.109752.
[22]
Frasnelli M,Cristofaro F,Sglavo VM,et al. Synthesis and Characterization of Strontium-Substituted Hydroxyapatite Nanoparticles for Bone Regeneration[J]. Mater Sci Eng C Mater Biol Appl,2017,71:653-662. DOI:10.1016/j.msec.2016.10.047.
[23]
Xing M,Wang X,Wang E,et al. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions[J]. Acta Biomater,2018,72:381-395. DOI:10.1016/j.actbio.2018.03.051.
[24]
AlQaysi M,Aldaadaa A,Mordan N,et al. Zinc and strontium based phosphate glass beads:a novel material for bone tissue engineering[J]. Biomed Mater,2017,12(6):065011. DOI:10.1088/1748-605X/aa8346.
[25]
Mao L,Xia L,Chang J,et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis,osteoclastogenesis and angiogenesis for osteoporotic bone regeneration[J]. Acta Biomater,2017,61:217-232. DOI:10.1016/j.actbio.2017.08.015.
[26]
Lino AB,McCarthy AD,Fernández JM. Evaluation of Strontium-Containing PCL-PDIPF Scaffolds for Bone Tissue Engineering:In Vitro and In Vivo Studies[J]. Ann Biomed Eng,2019,47(3):902-912. DOI:10.1007/s10439-018-02183-z.
[27]
Koç Demir A,Elçin AE,Elçin YM. Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold[J]. Mater Sci Eng C Mater Biol Appl,2018,89:8-14. DOI:10.1016/j.msec.2018.03.021.
[28]
Wang S,Yang Y,Li Y,et al. Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant[J]. Colloids Surf B Biointerfaces,2018,176:38-46. DOI:10.1016/j.colsurfb.2018.12.056.
[29]
Birgani ZT,Malhotra A,van Blitterswijk CA,et al. Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium[J]. J Biomed Mater Res Part A,2016,104(8):1946-1960. DOI:10.1002/jbm.a.35725.
[30]
Jiang QH,Gong X,Wang XX,et al. Osteogenesis of rat mesenchymal stem cells and osteoblastic cells on strontium-doped nanohydroxyapatite-coated titanium surfaces[J]. Int J Oral Maxillofac Implants,2015,30(2):461-471. DOI:10.11607/jomi.3798.
[31]
Zhang X,Li H,Lin CC,et al. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway[J]. Biomater Sci,2018,6(2):418-430. DOI:10.1039/C7BM01044C.
[32]
Ye H,Zhu J,Deng D,et al. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration[J]. J Biomater Sci Polym Ed,2019,30(16):1505-1522. DOI:10.1080/09205063.2019.1646628.
[33]
Chen Y,Zheng Z,Zhou R,et al. Developing a Strontium-Releasing Graphene Oxide-/Collagen-Based Organic-Inorganic Nanobiocomposite for Large Bone Defect Regeneration via MAPK Signaling Pathway[J]. ACS Appl Mater Interfaces,2019,11(17):15986-15997. DOI:10.1021/acsami.8b22606.
[34]
Li JJ,Dunstan CR,Entezari A,et al. A Novel Bone Substitute with High Bioactivity,Strength,and Porosity for Repairing Large and Load-Bearing Bone Defects[J]. Adv Healthc Mater,2019,8(8):e1801298. DOI:10.1002/adhm.201801298.
[35]
Yan S,Xia P,Xu S,et al. Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA-g-Poly(γ-benzyl-L-glutamate)for Bone Tissue Engineering[J]. ACS Appl Mater Interfaces,2018,10(19):16270-16281. DOI:10.1021/acsami.8b02448.
[36]
Oryan A,Baghaban Eslaminejad M,Kamali A,et al. Synergistic effect of strontium,bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects [J]. J Biomed Mater Res B Appl Biomater,2019,107(1):50-64. DOI:10.1002/jbm.b.34094.
[37]
Mørch YA,Donati I,Strand BL,et al. Effect of Ca2+,Ba2+,and Sr2+ on alginate microbeads[J]. Biomacromolecules,2006,7(5):1471-1480. DOI:10.1021/bm060010d.
[38]
Zhou Q,Kang H,Bielec M,et al. Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing[J]. Carbohydr Polym,2018,197:292-304. DOI:10.1016/j.carbpol.2018.05.078.
[39]
Iskandar L,Rojo L,Di Silvio L,et al. The effect of chelation of sodium alginate with osteogenic ions,calcium,zinc,and strontium[J]. J Biomater Appl,2019,34(4):573-584. DOI:10.1177/0885328219861904.
[40]
Cattalini JP,Hoppe A,Pishbin F,et al. Novel nanocomposite biomaterials with controlled copper/calcium release capability for bone tissue engineering multifunctional scaffolds[J]. J R Soc Interface,2015,12(110):0509. DOI:10.1098/rsif.2015.0509.
[41]
Li K,Xia C,Qiao Y,et al. Dose-response relationships between copper and its biocompatibility/antibacterial activities[J]. J Trace Elem Med Biol,2019,55:127-135. DOI:10.1016/j.jtemb.2019.06.015.
[42]
Zhu X,Kong Y,Huang Y,et al. Influence of Strontium on Vascular Endothelial Growth Factor and Fibroblast Growth Factor 2 Expression in Rat Chondrocytes Cultured In Vitro[J]. Biol Trace Elem Res,2019,190(2):466-471. DOI:10.1007/s12011-018-1564-y.
[43]
Xin X,Wu J,Zheng A,et al. Delivery vehicle of muscle-derived irisin based on silk/calcium silicate/sodium alginate composite scaffold for bone regeneration[J]. Int J Nanomedicine,2019,14:1451-1467. DOI:10.2147/ijn.s193544.
[44]
Loozen LD,Kruyt MC,Kragten AHM,et al. BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration[J]. PLoS One,2019,14(7):e0220028. DOI:10.1371/journal.pone.0220028.
[45]
Klontzas ME,Reakasame S,Silva R,et al. Oxidized alginate hydrogels with the GHK peptide enhance cord blood mesenchymal stem cell osteogenesis:A paradigm for metabolomics-based evaluation of biomaterial design[J]. Acta Biomater,2019,88:224-240. DOI:10.1016/j.actbio.2019.02.017.
[46]
Reakasame S,Boccaccini AR. Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications:A Review[J]. Biomacromolecules,2018,19(1):3-21. DOI:10.1021/acs.biomac.7b01331.
[47]
Bendtsen ST,Quinnell SP,Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds[J]. J Biomed Mater Res Part A,2017,105(5):1457-1468. DOI:10.1002/jbm.a.36036.
[48]
Gonzalez-Fernandez T,Tierney EG,Cunniffe GM,et al. Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering[J]. Tissue Eng Part A,2016,22(9-10):776-787. DOI:10.1089/ten.TEA.2015.0576.
[49]
Sharma C,Dinda AK,Potdar PD,et al. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl,2016,64:416-427. DOI:10.1016/j.msec.2016.03.060.
[50]
Jeon O,Bouhadir KH,Mansour JM,et al. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties[J]. Biomaterials,2009,30(14):2724-2734. DOI:10.1016/j.biomaterials.2009.01.034.
[51]
Jeon O,Alt DS,Ahmed SM,et al. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels[J]. Biomaterials,2012,33(13):3503-3514. DOI:10.1016/j.biomaterials.2012.01.041.
[52]
Jeon O,Samorezov JE,Alsberg E. Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications[J]. Acta Biomater,2014,10(1):47-55. DOI:10.1016/j.actbio.2013.09.004.
[53]
Jeon O,Alsberg E. Photofunctionalization of alginate hydrogels to promote adhesion and proliferation of human mesenchymal stem cells[J]. Tissue Eng Part A,2013,19(11-12):1424-1432. DOI:10.1089/ten.TEA.2012.0581.
[54]
Jeong SI,Jeon O,Krebs MD,et al. Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties,cell adhesivity and growth factor release[J]. Eur Cell Mater,2012,24:331-343. DOI:10.22203/eCM.v024a24.
[55]
Yin M,Xu F,Ding H,et al. Incorporation of magnesium ions into photo-crosslinked alginate hydrogel enhanced cell adhesion ability[J]. J Tissue Eng Rege Med,2015,9(9):1088-1092. DOI:10.1002/term.2011.
[56]
Segredo-Morales E,García-García P,Reyes R,et al. Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic-alginate composite thermogel[J]. Int J Pharm,2018,543(1-2):160-168. DOI:10.1016/j.ijpharm.2018.03.034.
[57]
Jahangir S,Hosseini S,Mostafaei F,et al. 3D-porous β-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects[J]. J Mater Sci Mater Med,2018,30(1):1. DOI:10.1007/s10856-018-6202-x.
[58]
Kong Y,Zhao Y,Li D,et al. Dual delivery of encapsulated BM-MSCs and BMP-2 improves osteogenic differentiation and new bone formation[J]. J Biomed Mater Res A,2019,107(10):2282-2295. DOI:10.1002/jbm.a.36737.
[59]
Ruvinov E,Tavor Re′em T,Witte F,et al. Articular cartilage regeneration using acellular bioactive affinity-binding alginate hydrogel:A 6-month study in a mini-pig model of osteochondral defects[J]. J Orthop Translat,2018,16:40-52. DOI:10.1016/j.jot.2018.08.003.
[60]
Lu Y,Li L,Zhu Y,et al. Multifunctional Copper-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating Clinical Bacterial Infection and Promoting Bone Formation[J]. ACS Appl Mater Interfaces,2018,10(1):127-138. DOI:10.1021/acsami.7b13750.
[61]
Luo S,Wu J,Jia Z,et al. An Injectable,Bifunctional Hydrogel with Photothermal Effects for Tumor Therapy and Bone Regeneration[J]. Macromol Biosci,2019,19(9):e1900047. DOI:10.1002/mabi.201900047.
[62]
Höllriegl V,Röhmuss M,Oeh U,et al. Strontium biokinetics in humans:influence of alginate on the uptake of ingested strontium[J]. Health Phys,2004,86(2):193-196. DOI:10.1097/00004032-200402000-00011.
[63]
赵德路,铁朝荣,王新,等.复合锶离子光交联海藻酸盐水凝胶支架的机械和生物学性能[J].中国组织工程研究,2019,23(18):2880-2887. DOI:10.3969/j.issn.2095-4344.1711.
[64]
Carbohydr O,Soriente A,La Gatta A,et al. Macroporous alginate foams crosslinked with strontium for bone tissue engineering[J]. Carbohydr Polym,2018,202:72-83. DOI:10.1016/j.carbpol.2018.08.086.
[65]
Henriques Lourenço A,Neves N,Ribeiro-Machado C,et al. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model[J]. Sci Rep,2017,7(1):5098. DOI:10.1038/s41598-017-04866-4.
[66]
Valiense H,Barreto M,Resende RF,et al. In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits[J]. J Biomed Mater Res B Appl Biomater,2016,104(2):274-282. DOI:10.1002/jbm.b.33392.
[1] 徐煜琛, 李璐, 薛冬令, 赵德伟. 外泌体介导股骨头坏死机制与治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(03): 247-252.
[2] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[3] 陈伟洋, 田俊, 韦曦. 硅离子在骨组织修复再生领域的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(06): 375-381.
[4] 吴斯媛, 艾毅龙. 两种生物膜材料在牙周辅助加速成骨正畸治疗技术中的骨增量研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 79-84.
[5] 贺钧, 谢志刚, 李自良. 骨劈开联合引导骨再生技术用于上前牙窄牙槽嵴种植修复一例[J]. 中华口腔医学研究杂志(电子版), 2017, 11(02): 126-128.
[6] 赵殿才, 何琨瑜, 欧阳舢. 根尖囊肿前牙行即刻种植联合引导骨再生术对骨形成的影响[J]. 中华口腔医学研究杂志(电子版), 2016, 10(02): 129-134.
[7] 范静, 李雪铃. 前牙区引导骨再生同期植入两种种植体的美学效果比较[J]. 中华口腔医学研究杂志(电子版), 2015, 09(03): 237-242.
[8] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[9] 金鑫, 王宝泉, 童伟, 刘先哲, 张晓光, 方家瑞, 李松, 张玉琼, Rabi M Dhakal, 汪健, 杨述华, 田洪涛. 糖基化改装人脂肪来源干细胞促进其骨髓归巢及成骨的研究[J]. 中华老年骨科与康复电子杂志, 2018, 04(05): 287-295.
阅读次数
全文


摘要