[1] |
Agarwal R,García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair[J]. Adv Drug Deliv Rev,2015,94:53-62. DOI: 10.1016/j.addr.2015.03.013.
|
[2] |
Gruskin E,Doll BA,Futrell FW,et al. Demineralized bone matrix in bone repair:history and use[J]. Adv Drug Deliv Rev,2012,64(12):1063-1077. DOI: 10.1016/j.addr.2012.06.008.
|
[3] |
Wei P,Jing W,Yuan Z,et al. Vancomycin- and Strontium-Loaded Microspheres with Multifunctional Activities against Bacteria,in Angiogenesis and in Osteogenesis for Enhancing Infected Bone Regeneration[J]. ACS Appl Mater Interfaces,2019,11(34):30596-30609. DOI: 10.1021/acsami.9b10219.
|
[4] |
Li L,Yu F,Zheng L,et al. Natural hydrogels for cartilage regeneration:Modification,preparation and application[J]. J Orthop Translat,2018,17:26-41. DOI: 10.1016/j.jot.2018.09.003.
|
[5] |
Wang JL,Mukherjee S,Nisbet DR,et al. In vitro evaluation of biodegradable magnesium alloys containing micro-alloying additions of strontium,with and without zinc[J]. J Mater Chem B,2015,3(45):8874-8883. DOI: 10.1039/C5TB01516B.
|
[6] |
Cheng D,Liang Q,Li Y,et al. Strontium incorporation improves the bone-forming ability of scaffolds derived from porcine bone[J]. Colloids Surf B Biointerfaces,2018,162:279-287. DOI: 10.1016/j.colsurfb.2017.11.070.
|
[7] |
Riedel C,Zimmermann EA,Zustin J,et al. The incorporation of fluoride and strontium in hydroxyapatite affects the composition,structure,and mechanical properties of human cortical bone[J]. J Biomed Mater Res Part A,2016,105(2):433. DOI: 10.1002/jbm.a.35917.
|
[8] |
Place ES,Rojo L,Gentleman E,et al. Strontium- and zinc-alginate hydrogels for bone tissue engineering[J]. Tissue Eng Part A,2011,17(21-22):2713-2722. DOI: 10.1089/ten.TEA.2011.0059
|
[9] |
Kargozar S,Montazerian M,Fiume E,et al. Multiple and Promising Applications of Strontium(Sr)-Containing Bioactive Glasses in Bone Tissue Engineering[J]. Front Bioeng Biotechnol,2019,7:161. DOI: 10.3389/fbioe.2019.00161.
|
[10] |
|
[11] |
|
[12] |
Lei Y,Xu Z,Ke Q,et al. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl,2017,72:134-142. DOI: 10.1016/j.msec.2016.11.063.
|
[13] |
Roohaniesfahani I,Wang J,No YJ,et al. Modulatory effect of simultaneously released magnesium,strontium,and silicon ions on injectable silk hydrogels for bone regeneration[J]. Mater Sci Eng C Mater Biol Appl,2019,94:976-987. DOI: 10.1016/j.msec.2018.10.053.
|
[14] |
Safronov AP,Mikhnevich EA,Lotfollahi Z,et al. Polyacrylamide Ferrogels with Magnetite or Strontium Hexaferrite:Next Step in the Development of Soft Biomimetic Matter for Biosensor Applications[J]. Sensors(Basel),2018,18(1):257. DOI: 10.3390/s18010257.
|
[15] |
Salarian M,Xu WZ,Bohay R,et al. Angiogenic Rg 1/Sr-Doped TiO 2 Nanowire/Poly(Propylene Fumarate)Bone Cement Composites[J]. Macromol Biosci,2017,17(2). DOI: 10.1002/mabi.201600156.
|
[16] |
Oh H,Lu AX,Javvaji V,et al. Light-Directed Self-Assembly of Robust Alginate Gels at Precise Locations in Microfluidic Channels[J]. ACS Appl Mater Interfaces,2016,8(27):17529-17538. DOI: 10.1021/acsami.6b03826.
|
[17] |
Kaklamani G,Cheneler D,Grover LM,et al. Mechanical properties of alginate hydrogels manufactured using external gelation[J]. J Mech Beha Biomed Mater,2014,36:135-142.DOI: 10.1016/j.jmbbm.2014.04.013.
|
[18] |
Arepalli SK,Tripathi H,Hira SK,et al. Enhanced bioactivity,biocompatibility and mechanical behavior of strontium substituted bioactive glasses[J]. Mater Sci Eng C Mater Biol Appl,2016,69:108-116. DOI: 10.1016/j.msec.2016.06.070.
|
[19] |
Gao C,Liu H,Luo ZP,et al. Modification of calcium phosphate cement with poly(γ-glutamic acid)and its strontium salt for kyphoplasty application[J]. Mater Sci Eng C Mater Biol Appl,2017,80:352-361. DOI: 10.1016/j.msec.2017.05.070.
|
[20] |
Goodarzi H,Hashemi-Najafabadi S,Baheiraei N,et al. Preparation and Characterization of Nanocomposite Scaffolds (Collagen/β-TCP/SrO)for Bone Tissue Engineering[J]. Tissue Eng Regen Med,2019,16(3):237-251. DOI: 10.1007/s13770-019-00184-0.
|
[21] |
Shahrouzifar MR,Salahinejad E,Sharifi E. Co-incorporation of strontium and fluorine into diopside scaffolds:Bioactivity,biodegradation and cytocompatibility evaluations[J]. Mater Sci Eng C Mater Biol Appl,2019,103:109752. DOI: 10.1016/j.msec.2019.109752.
|
[22] |
Frasnelli M,Cristofaro F,Sglavo VM,et al. Synthesis and Characterization of Strontium-Substituted Hydroxyapatite Nanoparticles for Bone Regeneration[J]. Mater Sci Eng C Mater Biol Appl,2017,71:653-662. DOI: 10.1016/j.msec.2016.10.047.
|
[23] |
Xing M,Wang X,Wang E,et al. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions[J]. Acta Biomater,2018,72:381-395. DOI: 10.1016/j.actbio.2018.03.051.
|
[24] |
AlQaysi M,Aldaadaa A,Mordan N,et al. Zinc and strontium based phosphate glass beads:a novel material for bone tissue engineering[J]. Biomed Mater,2017,12(6):065011. DOI: 10.1088/1748-605X/aa8346.
|
[25] |
Mao L,Xia L,Chang J,et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis,osteoclastogenesis and angiogenesis for osteoporotic bone regeneration[J]. Acta Biomater,2017,61:217-232. DOI: 10.1016/j.actbio.2017.08.015.
|
[26] |
Lino AB,McCarthy AD,Fernández JM. Evaluation of Strontium-Containing PCL-PDIPF Scaffolds for Bone Tissue Engineering:In Vitro and In Vivo Studies[J]. Ann Biomed Eng,2019,47(3):902-912. DOI: 10.1007/s10439-018-02183-z.
|
[27] |
Koç Demir A,Elçin AE,Elçin YM. Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold[J]. Mater Sci Eng C Mater Biol Appl,2018,89:8-14. DOI: 10.1016/j.msec.2018.03.021.
|
[28] |
Wang S,Yang Y,Li Y,et al. Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant[J]. Colloids Surf B Biointerfaces,2018,176:38-46. DOI: 10.1016/j.colsurfb.2018.12.056.
|
[29] |
Birgani ZT,Malhotra A,van Blitterswijk CA,et al. Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium[J]. J Biomed Mater Res Part A,2016,104(8):1946-1960. DOI: 10.1002/jbm.a.35725.
|
[30] |
Jiang QH,Gong X,Wang XX,et al. Osteogenesis of rat mesenchymal stem cells and osteoblastic cells on strontium-doped nanohydroxyapatite-coated titanium surfaces[J]. Int J Oral Maxillofac Implants,2015,30(2):461-471. DOI: 10.11607/jomi.3798.
|
[31] |
Zhang X,Li H,Lin CC,et al. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway[J]. Biomater Sci,2018,6(2):418-430. DOI: 10.1039/C7BM01044C.
|
[32] |
Ye H,Zhu J,Deng D,et al. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration[J]. J Biomater Sci Polym Ed,2019,30(16):1505-1522. DOI: 10.1080/09205063.2019.1646628.
|
[33] |
Chen Y,Zheng Z,Zhou R,et al. Developing a Strontium-Releasing Graphene Oxide-/Collagen-Based Organic-Inorganic Nanobiocomposite for Large Bone Defect Regeneration via MAPK Signaling Pathway[J]. ACS Appl Mater Interfaces,2019,11(17):15986-15997. DOI: 10.1021/acsami.8b22606.
|
[34] |
Li JJ,Dunstan CR,Entezari A,et al. A Novel Bone Substitute with High Bioactivity,Strength,and Porosity for Repairing Large and Load-Bearing Bone Defects[J]. Adv Healthc Mater,2019,8(8):e1801298. DOI: 10.1002/adhm.201801298.
|
[35] |
Yan S,Xia P,Xu S,et al. Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA-g-Poly(γ-benzyl-L-glutamate)for Bone Tissue Engineering[J]. ACS Appl Mater Interfaces,2018,10(19):16270-16281. DOI: 10.1021/acsami.8b02448.
|
[36] |
Oryan A,Baghaban Eslaminejad M,Kamali A,et al. Synergistic effect of strontium,bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects [J]. J Biomed Mater Res B Appl Biomater,2019,107(1):50-64. DOI: 10.1002/jbm.b.34094.
|
[37] |
Mørch YA,Donati I,Strand BL,et al. Effect of Ca2+,Ba2+,and Sr2+ on alginate microbeads[J]. Biomacromolecules,2006,7(5):1471-1480. DOI: 10.1021/bm060010d.
|
[38] |
Zhou Q,Kang H,Bielec M,et al. Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing[J]. Carbohydr Polym,2018,197:292-304. DOI: 10.1016/j.carbpol.2018.05.078.
|
[39] |
Iskandar L,Rojo L,Di Silvio L,et al. The effect of chelation of sodium alginate with osteogenic ions,calcium,zinc,and strontium[J]. J Biomater Appl,2019,34(4):573-584. DOI: 10.1177/0885328219861904.
|
[40] |
Cattalini JP,Hoppe A,Pishbin F,et al. Novel nanocomposite biomaterials with controlled copper/calcium release capability for bone tissue engineering multifunctional scaffolds[J]. J R Soc Interface,2015,12(110):0509. DOI: 10.1098/rsif.2015.0509.
|
[41] |
Li K,Xia C,Qiao Y,et al. Dose-response relationships between copper and its biocompatibility/antibacterial activities[J]. J Trace Elem Med Biol,2019,55:127-135. DOI: 10.1016/j.jtemb.2019.06.015.
|
[42] |
Zhu X,Kong Y,Huang Y,et al. Influence of Strontium on Vascular Endothelial Growth Factor and Fibroblast Growth Factor 2 Expression in Rat Chondrocytes Cultured In Vitro[J]. Biol Trace Elem Res,2019,190(2):466-471. DOI: 10.1007/s12011-018-1564-y.
|
[43] |
Xin X,Wu J,Zheng A,et al. Delivery vehicle of muscle-derived irisin based on silk/calcium silicate/sodium alginate composite scaffold for bone regeneration[J]. Int J Nanomedicine,2019,14:1451-1467. DOI: 10.2147/ijn.s193544.
|
[44] |
Loozen LD,Kruyt MC,Kragten AHM,et al. BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration[J]. PLoS One,2019,14(7):e0220028. DOI: 10.1371/journal.pone.0220028.
|
[45] |
Klontzas ME,Reakasame S,Silva R,et al. Oxidized alginate hydrogels with the GHK peptide enhance cord blood mesenchymal stem cell osteogenesis:A paradigm for metabolomics-based evaluation of biomaterial design[J]. Acta Biomater,2019,88:224-240. DOI: 10.1016/j.actbio.2019.02.017.
|
[46] |
Reakasame S,Boccaccini AR. Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications:A Review[J]. Biomacromolecules,2018,19(1):3-21. DOI: 10.1021/acs.biomac.7b01331.
|
[47] |
Bendtsen ST,Quinnell SP,Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds[J]. J Biomed Mater Res Part A,2017,105(5):1457-1468. DOI: 10.1002/jbm.a.36036.
|
[48] |
Gonzalez-Fernandez T,Tierney EG,Cunniffe GM,et al. Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering[J]. Tissue Eng Part A,2016,22(9-10):776-787. DOI: 10.1089/ten.TEA.2015.0576.
|
[49] |
Sharma C,Dinda AK,Potdar PD,et al. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl,2016,64:416-427. DOI: 10.1016/j.msec.2016.03.060.
|
[50] |
Jeon O,Bouhadir KH,Mansour JM,et al. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties[J]. Biomaterials,2009,30(14):2724-2734. DOI: 10.1016/j.biomaterials.2009.01.034.
|
[51] |
Jeon O,Alt DS,Ahmed SM,et al. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels[J]. Biomaterials,2012,33(13):3503-3514. DOI: 10.1016/j.biomaterials.2012.01.041.
|
[52] |
Jeon O,Samorezov JE,Alsberg E. Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications[J]. Acta Biomater,2014,10(1):47-55. DOI: 10.1016/j.actbio.2013.09.004.
|
[53] |
Jeon O,Alsberg E. Photofunctionalization of alginate hydrogels to promote adhesion and proliferation of human mesenchymal stem cells[J]. Tissue Eng Part A,2013,19(11-12):1424-1432. DOI: 10.1089/ten.TEA.2012.0581.
|
[54] |
Jeong SI,Jeon O,Krebs MD,et al. Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties,cell adhesivity and growth factor release[J]. Eur Cell Mater,2012,24:331-343. DOI: 10.22203/eCM.v024a24.
|
[55] |
Yin M,Xu F,Ding H,et al. Incorporation of magnesium ions into photo-crosslinked alginate hydrogel enhanced cell adhesion ability[J]. J Tissue Eng Rege Med,2015,9(9):1088-1092. DOI: 10.1002/term.2011.
|
[56] |
Segredo-Morales E,García-García P,Reyes R,et al. Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic-alginate composite thermogel[J]. Int J Pharm,2018,543(1-2):160-168. DOI: 10.1016/j.ijpharm.2018.03.034.
|
[57] |
Jahangir S,Hosseini S,Mostafaei F,et al. 3D-porous β-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects[J]. J Mater Sci Mater Med,2018,30(1):1. DOI: 10.1007/s10856-018-6202-x.
|
[58] |
Kong Y,Zhao Y,Li D,et al. Dual delivery of encapsulated BM-MSCs and BMP-2 improves osteogenic differentiation and new bone formation[J]. J Biomed Mater Res A,2019,107(10):2282-2295. DOI: 10.1002/jbm.a.36737.
|
[59] |
Ruvinov E,Tavor Re′em T,Witte F,et al. Articular cartilage regeneration using acellular bioactive affinity-binding alginate hydrogel:A 6-month study in a mini-pig model of osteochondral defects[J]. J Orthop Translat,2018,16:40-52. DOI: 10.1016/j.jot.2018.08.003.
|
[60] |
Lu Y,Li L,Zhu Y,et al. Multifunctional Copper-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating Clinical Bacterial Infection and Promoting Bone Formation[J]. ACS Appl Mater Interfaces,2018,10(1):127-138. DOI: 10.1021/acsami.7b13750.
|
[61] |
Luo S,Wu J,Jia Z,et al. An Injectable,Bifunctional Hydrogel with Photothermal Effects for Tumor Therapy and Bone Regeneration[J]. Macromol Biosci,2019,19(9):e1900047. DOI: 10.1002/mabi.201900047.
|
[62] |
Höllriegl V,Röhmuss M,Oeh U,et al. Strontium biokinetics in humans:influence of alginate on the uptake of ingested strontium[J]. Health Phys,2004,86(2):193-196. DOI: 10.1097/00004032-200402000-00011.
|
[63] |
|
[64] |
Carbohydr O,Soriente A,La Gatta A,et al. Macroporous alginate foams crosslinked with strontium for bone tissue engineering[J]. Carbohydr Polym,2018,202:72-83. DOI: 10.1016/j.carbpol.2018.08.086.
|
[65] |
Henriques Lourenço A,Neves N,Ribeiro-Machado C,et al. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model[J]. Sci Rep,2017,7(1):5098. DOI: 10.1038/s41598-017-04866-4.
|
[66] |
Valiense H,Barreto M,Resende RF,et al. In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits[J]. J Biomed Mater Res B Appl Biomater,2016,104(2):274-282. DOI: 10.1002/jbm.b.33392.
|