切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 144 -151. doi: 10.3877/cma.j.issn.1674-1366.2018.03.002

所属专题: 文献

基础研究

转化生长因子β1增强糖酵解促进舌鳞状细胞癌细胞上皮间充质转化及迁移与侵袭
李文清1, 刘海潮1, 梁建锋1, 陈冠辉1, 竺越1, 张鸣1, 侯劲松1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2018-01-02 出版日期:2018-06-01
  • 通信作者: 侯劲松
  • 基金资助:
    国家自然科学基金(81572660); 广东省自然科学基金(2015A030313034); 中山大学临床医学研究5010计划(2015018)

Transforming growth factor-β1 enhances glycolysis and promotes epithelial mesenchymal transition, cell migration and invasion of tongue squamous cell carcinoma

Wenqing Li1, Haichao Liu1, Jianfeng Liang1, Guanhui Chen1, Yue Zhu1, Ming Zhang1, Jinsong Hou1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2018-01-02 Published:2018-06-01
  • Corresponding author: Jinsong Hou
  • About author:
    Corresponding author:Hou Jinsong,Email:
引用本文:

李文清, 刘海潮, 梁建锋, 陈冠辉, 竺越, 张鸣, 侯劲松. 转化生长因子β1增强糖酵解促进舌鳞状细胞癌细胞上皮间充质转化及迁移与侵袭[J]. 中华口腔医学研究杂志(电子版), 2018, 12(03): 144-151.

Wenqing Li, Haichao Liu, Jianfeng Liang, Guanhui Chen, Yue Zhu, Ming Zhang, Jinsong Hou. Transforming growth factor-β1 enhances glycolysis and promotes epithelial mesenchymal transition, cell migration and invasion of tongue squamous cell carcinoma[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(03): 144-151.

目的

研究转化生长因子β1(TGF-β1)对舌鳞状细胞癌(TSCC)糖酵解活性和上皮间充质转化(EMT)及迁移与侵袭的影响。

方法

利用10 ng/mL TGF-β1处理TSCC SCC9细胞1、2、3 d,收集细胞上清液检测葡萄糖和乳酸表达变化;蛋白免疫印迹法(Western blot)检测TGF-β1处理1、2、3 d后糖酵解关键酶表达变化;应用10 ng/mL TGF-β1处理TSCC SCC9细胞2、4、6 d,在倒置显微镜下定时观察细胞形态;Western blot检测TGF-β1诱导2、4、6 d后EMT上皮标记蛋白E-cadherin、间质标记蛋白Vimentin、Snail和Slug的表达变化;Transwell小室检测细胞迁移和侵袭能力;同等培养条件下未经TGF-β1处理的为对照组。SPSS 13.0统计软件进行数据分析。

结果

在TGF-β1诱导条件下,TSCC SCC9细胞葡萄糖摄取量在2和3 d时[(34.1 ± 1.2)、(47.1 ± 2.3)mmol]较对照组显著升高(t2 d= 17.941,P2 d= 0.003;t3 d= 24.430,P3 d= 0.002),同时SCC9细胞乳酸生成量在2和3 d时[(46.4 ± 1.0)、(60.2 ± 2.0)mmol]较对照组明显增加(t2 d= 50.230,P2 d= 0.005;t3 d= 26.883,P3 d= 0.004);TGF-β1处理后,糖酵解关键酶HK2表达在2和3 d时(1.21 ± 0.04、1.30 ± 0.06)均高于对照组,差异有统计学意义(t2d= 6.111,P2 d= 0.026;t3 d= 6.423,P3 d= 0.023);糖酵解关键酶PKM2表达在2和3 d时(1.048 ± 0.002、1.071 ± 0.010)与对照组相比,差异无统计学意义(t2 d= 20.693,P2 d= 0.072;t3 d= 9.875,P3 d= 0.081);糖酵解关键酶PFKP在2和3 d时(0.820 ± 0.010、0.839 ± 0.036)表达较对照组明显升高(t2 d= 21.829,P2 d= 0.020;t3 d= 9.853,P3 d= 0.022);糖酵解关键酶GLUT1表达在2和3 d时(0.503 ± 0.007、0.589 ± 0.019)均高于对照,差异具有统计学意义(t2 d= 30.693,P2 d= 0.015;t3 d= 21.173,P3 d= 0.012)。在TGF-β1诱导下,与对照组相比,TSCC SCC9细胞从鹅卵石状变为长梭形,同时EMT上皮标记蛋白E-cadherin表达在2、4和6 d时(0.69 ± 0.03、0.67 ± 0.04、0.65 ± 0.04)较对照组降低,差异有统计学意义(t2 d= 7.187,P2 d= 0.019;t4 d= 6.631,P4 d= 0.022;t6 d= 6.690,P6 d= 0.022),间质标记蛋白Vimentin(1.089 ± 0.134、0.706 ± 0.025、0.620 ± 0.010)表达在2、4、6 d处与对照组相比表达升高(t2 d= 6.948,P2 d= 0.020;t4 d= 16.710,P4 d= 0.004;t6 d= 6.157,P6 d= 0.025),EMT转录因子snail在2 d时(1.14 ± 0.17)表达与对照组(0.77 ± 0.10)相比表达升高(t= 3.794,P= 0.015),EMT转录因子slug在2 d时(1.85 ± 0.11)表达与对照组(0.93 ± 0.02)相比表达升高(t= 15.385,P= 0.014);与对照组(20.0 ± 2.0)相比,TGF-β1处理后细胞迁移能力(45.7 ± 11.6)显著增加(t= 4.529,P= 0.017),细胞侵袭能力(58.7 ± 5.0)较对照组(22.3 ± 1.5)明显升高(t= 15.571,P= 0.015)。

结论

TGF-β1增强糖酵解,并促进TSCC细胞EMT及迁移和侵袭。

Objective

To investigate the influence of transforming growth factor-β1 (TGF-β1) on glycolysis, inducing epithelial mesenchymal transition (EMT) , cell migration and invasion of tongue squamous cell carcinoma (TSCC) .

Methods

TSCC SCC9 cells were treated with 10 ng/mL TGF-β1 for 1, 2 and 3 days and the cell supernatant was collected to detect changes in glucose and lactate. Western blot was used to detect the expression of glycolysis key enzymes following 1, 2, 3 days of treatment of TGF-β1. TSCC SCC9 cells were treated with 10 ng/mL TGF-β1 for 2, 4, 6 days, and the morphology of the cells was observed under inverted microscope. Western blot was used to detect the expression of E-cadherin, Vimentin, Snail and Slug following 2, 4, 6 days of treatment of TGF-β1. Transwell chamber was performed to detect cell migration and invasion. Statistical analysis was performed with SPSS 13.0 software.

Results

Under the TGF-β1 induction, the glucose uptake (34.1 ± 1.2, 47.1 ± 2.3) of SCC9 cells was significantly higher than that in the control group, and both showed statistically significant difference (t2 d= 17.941, P2 d= 0.003; t3 d= 24.430, P3 d= 0.002) . The lactic acid production (46.4 ± 1.0, 60.2 ± 2.0) in SCC9 cells was significantly higher than that in the control group, and both showed statistically significant difference (t2 d= 50.230, P2 d= 0.005; t3 d= 26.883, P3 d= 0.004) . The expression level of HK2 (1.21 ± 0.04, 1.30±0.06) in TGF-β1 treatment group was higher than control group, and both showed statistically significant difference (t2 d= 6.111, P2 d= 0.026; t3 d= 6.423, P3 d= 0.023) ; the expression level of PKM2 (1.048±0.002, 1.071±0.010) in TGF-β1 treatment group showed no significant difference compared with the control group, and both showed no statistically significant difference (t2 d= 20.693, P2 d= 0.072; t3 d= 9.875, P3 d= 0.081) ; the expression level of PFKP (0.820±0.010, 0.839±0.036) in TGF-β1 treatment group was higher than control group, and both showed statistically significant difference (t2 d= 21.829, P2 d= 0.020; t3 d= 9.853, P3 d= 0.022) ; The expression level of GLUT1 (0.503 ± 0.007, 0.589 ± 0.019) in TGF-β1 treatment group was higher than control group, and both showed statistically significant difference (t2 d= 30.693, P2 d= 0.015; t3 d= 21.173, P3 d= 0.012) . Under the TGF-β1 induction, the morphology of TSCC SCC9 cells changed from pebble to long spindle shape compared with the control group; The expression level of E-cadherin (0.69 ± 0.03, 0.67 ± 0.04, 0.65 ± 0.04) in TGF-β1 treatment group was lower than control group, and both showed statistically significant difference (t2 d= 7.187, P2 d= 0.019; t4 d= 6.631, P4 d= 0.022; t6 d= 6.690, P6 d= 0.022) ; The expression level of Vimentin (1.089 ± 0.134, 0.706 ± 0.025, 0.620 ± 0.010) in TGF-β1 treatment group was higher than control group, and both showed statistically significant difference (t2 d= 6.948, P2 d= 0.020; t4 d= 16.710, P4 d= 0.004; t6 d= 6.157, P6 d= 0.025) ; The expression level of snail (1.14 ± 0.17) in TGF-β1 treatment group was higher than control group (0.77 ± 0.10) , and both showed statistically significant difference (t= 3.794, P= 0.014) ; The expression level of slug (1.85 ± 0.11) in TGF-β1 treatment group was higher than control group (0.93 ± 0.02) , and both showed statistically significant difference (t= 15.385, P= 0.015) . The cell migration ability of SCC9 cell (45.7 ± 11.6) was increased under TGF-β1 treatment compared with control group (20.0 ± 2.0; t= 4.529, P= 0.017) ; The cell invasion ability of SCC9 cell (58.7 ± 5.0) was increased under TGF-β1 treatment compared with control group (22.3 ± 1.5; t= 15.571, P= 0.015) .

Conclusion

TGF-β1 enhances glycolysis and promotes EMT, cell migration and invasion of tongue squamous cell carcinoma.

图1 转化生长因子β1(TGF-β1)处理舌鳞状细胞癌SCC9细胞不同时间后葡萄糖摄取量和乳酸生成量变化
图2 转化生长因子β1(TGF-β1)处理不同时间后舌鳞状细胞癌SCC9细胞糖酵解关键酶表达的Western blot检测结果
图3 转化生长因子β1(TGF-β1)诱导不同时间后舌鳞状细胞癌SCC9细胞糖酵解关键酶相对表达变化
图4 转化生长因子β1(TGF-β1)处理不同时间后舌鳞状细胞癌SCC9细胞形态变化(倒置显微镜低倍放大)
图5 转化生长因子β1(TGF-β1)处理不同时间后舌鳞状细胞癌SCC9细胞上皮间充质转化(EMT)相关蛋白的Western blot检测结果
图6 转化生长因子β1(TGF-β1)诱导舌鳞状细胞癌SCC9细胞不同时间后上皮间充质转化(EMT)相关蛋白表达相对变化
图7 转化生长因子β1(TGF-β1)处理后舌鳞状细胞癌SCC9细胞迁移能力比较(倒置显微镜低倍放大)
图8 转化生长因子β1(TGF-β1)处理后舌鳞状细胞癌SCC9细胞侵袭能力比较(倒置显微镜低倍放大)
[1]
Xu Q,Zhang Q,Ishida Y,et al. EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect[J]. Oncotarget,2017,8(6):9557-9571.
[2]
Geiger TR,Peeper DS. Metastasis mechanisms[J]. Biochim Biophys Acta,2009,1796(2):293-308.
[3]
Lamouille S,Xu J,Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol,2014,15(3):178-196.
[4]
Ye X,Weinberg RA. Epithelial-Mesenchymal Plasticity:A Central Regulator of Cancer Progression[J]. Trends Cell Biol,2015,25(11):675-686.
[5]
Kondaveeti Y,Guttilla Reed IK,White BA. Epithelial-mesen-chymal transition induces similar metabolic alterations in two in-dependent breast cancer cell lines[J]. Cancer Letters,2015,364(1):44-58.
[6]
Bellomo C,Caja L,Moustakas A. Transforming growth factor β as regulator of cancer stemness and metastasis[J]. Br J Cancer,2016,115(7):761-769.
[7]
Hassan A,Siddique M,Bashir H,et al. 18F-FDG PET-CT imaging versus bone marrow biopsy in pediatric Hodgkin′s lymphoma:a quantitative assessment of marrow uptake and novel insights into clinical implications of marrow involvement[J]. Eur J Nucl Med Mol Imaging,2017,44(7):1198-1206.
[8]
Liu M,Quek LE,Sultani G,et al. Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma[J]. Cancer Metab,2016(4):19.
[9]
Son H,Moon A. Epithelial-mesenchymal Transition and Cell Invasion[J]. Toxicol Res,2010,26(4):245-252.
[10]
Canel M,Serrels A,Frame MC,et al. E-cadherin-integrin crosstalk in cancer invasion and metastasis[J]. J Cell Sci,2013,126(Pt 2):393-401.
[11]
Rodriguez FJ,Lewis-Tuffin LJ,Anastasiadis PZ. E-cadherin′s dark side:Possible role in tumor progression[J]. Biochim Biophys Acta,2012,1826(1):23-31.
[12]
Scanlon CS,Van Tubergen EA,Inglehart RC,et al. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma[J]. J Dent Res,2013,92(2):114-121.
[13]
Kim NH,Cha YH,Lee J,et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress[J]. Nat Commun,2017(8):14374.
[14]
Masin M,Vazquez J,Rossi S,et al. GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer[J]. Cancer Metab,2014(2):11.
[1] 张锦, 郑瑾, 叶陈晓, 陈海滔, 李欣荣, 肖海娟, 郭勇. 基于糖酵解相关基因模型的乳腺癌患者预后及免疫功能综合分析[J]. 中华乳腺病杂志(电子版), 2022, 16(06): 336-345.
[2] 张文涵, 王成. 瘢痕鳞状细胞癌的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 59-64.
[3] 岳志浩, 王晶, 闫子玉, 葛娜, 许向亮, 单小峰, 崔念晖. 牙槽外科相关舌神经损伤早期诊断及治疗中磁共振神经成像技术的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 413-417.
[4] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[5] 胡伟涛, 李星瀚, 刘琦, 孟贺, 马琳, 邓永强. 微小核糖核酸-21在口腔鳞状细胞癌中作为生物学标志物的研究进展[J]. 中华口腔医学研究杂志(电子版), 2022, 16(05): 328-332.
[6] 黄优, 侯伟, 潘永初, 王林. 两种功能矫治器在儿童开HE畸形治疗中的对比研究[J]. 中华口腔医学研究杂志(电子版), 2022, 16(05): 281-286.
[7] 周炼, 周航, 张东强, 徐海涛. 改良舌弓治疗下颌第一磨牙异位萌出的临床应用[J]. 中华口腔医学研究杂志(电子版), 2022, 16(02): 94-99.
[8] 李众, 姚小武, 陈仕生, 卢子正, 林敏校, 桂心伟. Toll样受体9和环氧合酶2在口腔鳞状细胞癌及癌旁组织中的表达意义[J]. 中华口腔医学研究杂志(电子版), 2021, 15(06): 333-340.
[9] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[10] 王强, 陈鑫, 翁小雪, 庄永泽, 俞国庆. 硫酸吲哚酚通过TGF-β1诱导腹膜间皮细胞转分化[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 329-334.
[11] 丁丰悦, 武宏春, 黄莹, 殷为民, 雷伟. miR-148/152家族调控内皮细胞糖酵解相关基因的表达分析[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 321-328.
[12] 郭永坤, 单峤, 付旭东, 李培栋, 谢井伟, 周少龙, 刘婉清, 刘春颖. 显微血管减压术治疗原发性舌咽神经痛[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 318-319.
[13] 陈星月, 陈新龙, 王逸平, 刘向新, 赵宏胜. 舌下微循环监测对脓毒症休克患者并发急性肾损伤的预测价值[J]. 中华重症医学电子杂志, 2022, 08(02): 147-152.
[14] 张艳, 秦方园, 赵荣, 钱文娟, 顾毅锋, 张亚兵. 富亮氨酸a2糖蛋白1与类风湿关节炎活动性的相关性[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1126-1130.
[15] 王昊, 明倩文, 王斌, 卢太坤, 张海宁. 利奈唑胺致黑毛舌的临床诊断学特征[J]. 中华诊断学电子杂志, 2023, 11(04): 254-260.
阅读次数
全文


摘要