切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 135 -143. doi: 10.3877/cma.j.issn.1674-1366.2018.03.001

所属专题: 文献

基础研究

改良扩孔介孔硅介导大鼠骨髓间充质干细胞成骨向分化
陈慧敏1, 钟奇帜1, 黄紫华1, 郭嘉欣1, 王若旬1, 麦穗1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2018-01-26 出版日期:2018-06-01
  • 通信作者: 麦穗
  • 基金资助:
    国家自然科学基金(81200776); 广东省自然科学基金(2014A030313068)

Stimulation of osteogenesis of rat bone marrow mesenchymal stem cells by modified large pore mesoporous silica nanoparticles

Huimin Chen1, Qizhi Zhong1, Zihua Huang1, Jiaxin Guo1, Ruoxun Wang1, Sui Mai1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2018-01-26 Published:2018-06-01
  • Corresponding author: Sui Mai
  • About author:
    Corresponding author:Mai Sui,Email:
引用本文:

陈慧敏, 钟奇帜, 黄紫华, 郭嘉欣, 王若旬, 麦穗. 改良扩孔介孔硅介导大鼠骨髓间充质干细胞成骨向分化[J]. 中华口腔医学研究杂志(电子版), 2018, 12(03): 135-143.

Huimin Chen, Qizhi Zhong, Zihua Huang, Jiaxin Guo, Ruoxun Wang, Sui Mai. Stimulation of osteogenesis of rat bone marrow mesenchymal stem cells by modified large pore mesoporous silica nanoparticles[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(03): 135-143.

目的

探讨自制的扩孔介孔硅纳米粒子(LPMSNs)的材料性能,及其对大鼠骨髓间充质干细胞(BMSCs)增殖和成骨向分化的影响。

方法

溶胶凝胶法合成介孔硅纳米颗粒(MSNs),使用扩孔剂1,3,5-三甲苯(TMB)对初始合成的小孔径高温扩孔。透射电镜(TEM)、N2吸附解吸附、孔径分布、孔容及比表面积分析、傅里叶红外光谱(FTIR)、热重分析(TGA)检测其形貌结构和理化性能。体外分离培养BMSCs,并对其增殖能力和多向分化潜能进行鉴定,取第3代细胞用于实验。配置不同浓度LPMSNs培养液,采用细胞计数试剂盒(CCK-8)检测LPMSNs的细胞毒性。分为对照组、LPMSNs组(10 μg/mL),培养21 d后,茜素红染色法检测各组细胞矿化结节。培养7、14 d后,实时荧光定量聚合酶链反应(PCR)法检测成骨相关基因碱性磷酸酶(ALP)、Runx相关转录因子(Runx2)、骨钙素(OCN)表达。培养14 d后,蛋白免疫印迹法(Western blot)检测成骨相关蛋白水平表达。使用SPSS 20.0对数据进行单因素方差分析(One-Way ANOVA)和t检验比较,以P<0.05认为差异有统计学意义。

结果

TEM显示LPMSNs粒径约为200 nm,其N2吸附解吸附曲线为Ⅳ型等温线,有吸附的迟滞环;LPMSNs的孔径分布图显示其孔径分布峰值为7.39 nm,BET比表面积图计算出来的BET比表面积为(340.5 ± 2.8)m2/g,BJH孔容为1.8 cm3/g。在LPMSNs的FTIR的数据中,可观察到位于460 cm-1的Si-O-Si横向摇摆振动峰(TO1);位于800 cm-1的Si-O-Si对称伸缩振动峰(TO2);位于1070 cm-1的Si-O-Si非对称伸缩振动峰(TO3),位于940 ~ 960 cm-1的Si-OH键振动峰,位于3000 ~ 3700 cm-1的-OH振动峰。TGA显示LPMSNs在28~1000 ℃之间整个失重所占百分比约为1.61%。CCK-8法结果显示低浓度(<20 μg/mL)的LPMSNs对细胞活力无明显影响。茜素红染色法显示与对照组相比,LPMSNs组的细胞矿化结节形成数量较多,体积较大。实时荧光定量PCR结果表明,LPMSNs组7 d时ALP表达量(6.2 ± 1.9)与对照组相比显著提高(t = 4.83,P = 0.0085),Runx2表达量(4.3 ± 0.6)与对照组相比显著提高(t = 9.76,P = 0.0006);14 d时ALP表达量(19.2 ± 1.4)与对照组相比显著提高(t = 4.86,P = 0.0083)、Runx2表达量(4.9 ± 0.7)与对照组相比显著提高(t = 7.73,P = 0.0203)、OCN表达量(17.2 ± 3.6)与对照组相比显著提高(t = 5.52,P = 0.0052)。Western blot的结果显示,成骨分化的第14天,LPMSNs组的Runx2相对表达量(1.7 ± 0.3)与对照组相比呈上升趋势(t = 3.48,P = 0.0254);OCN相对表达量(1.69 ± 0.21)与对照组相比显著提高,差异有统计学意义(t = 5.71,P = 0.0047)。

结论

本研究制备LPMSNs具有较大的比表面积、孔容和亲水性,适用于负载较大分子量的蛋白或细胞因子,细胞毒性小,可促进大鼠BMSCs成骨向分化,作为骨缺损的修复材料具备一定的应用价值。

Objective

To study the material properties and effect of the synthetic large pore mesoporous silica nanoparticles (LPMSNs) on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in rats.

Methods

Mesoporous silica nanoparticles (MSNs) was synthetised with the method of sol gel. The expanding agent 1, 3, 5-Trimethylbenzene was applied to expand the porous of the initial synthesis MSNs with high temperature. Transmission electron microscopy (TEM) , N2 adsorption-desorption, pore size distribution, pore volume and specific surface area analysis, Fourier infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to detect the morphological structure as well as physical and chemical properties of LPMSNs. BMSCs were cultured in vitro and their proliferative capacity and multidirectional differentiation potential were identified. The third generation of the cultured cells were selected for subsequent experiment. Different concentrations of LPMSNs were configured and a CCK-8 kit was applied to detect the cytotoxicity of LPMSNs. The osteogenic induction cell medium contained LPMSNs (10 μg/mL) was incubated with the BMSCs cells. After 21 days, alizarin red staining was used to detect the cell mineralized nodules and compared with the control group. The expression of bone related genes ALP, Runx2 and OCN were detected by qPCR method after 7 and 14 days incubation. After 14 days of cultivation, the expression of bone related gene Runx2 and OCN at protein level was detected by Western blot. The data were analyzed by One-Way ANOVA and t test by SPSS 20.0 software package. The difference was statistically significant with P<0.05.

Results

TEM showed that LPMSNs particle diameter was about 200 nm, and the Nitrogen sorption isotherms of LPMSNs exhibited typical type Ⅳ isotherm and a hysteresis loop. The pore width, Brunauer-Emmett-Teller (BET) specific surface area and Barrett-Joyner-Halenda (BJH) pore volume were 7.39 nm, (340.5 ± 2.8) m2/g and 1.8 cm3/g respectively. As shown in FTIR spectra of LPMSNs, 460 cm-1 represents the transverse optical rocking motions of Si-O-Si, 800 cm-1 represents the symmetric stretching of Si-O-Si; 1070 cm-1 represents the antisymmetric stretching of Si-O-Si. The peak of 940-960 cm-1 represents the Si-OH bond, 3000-3700 cm-1 represents the-OH bond. TGA showed the weight loss percentage of LPMSNs in 28-1000 ℃ was about 1.61%. The results indicated that low concentration (<20 μg/mL) LPMSNs had no significant effect on the cell viability. Alizarin red staining showed more mineralized nodules in LPMSNs group compared with the control group. PCR results showed that at the 7th day, the expression of ALP (6.2 ± 1.9) and Runx2 (4.3 ± 0.6) in LPMSNs group were significantly higher than the control group (tALP= 4.83, PALP = 0.0085; tRunx2 = 9.76, PRunx2 = 0.0006) respectively. At the 14th day, the expression of ALP (19.2±1.4) , Runx2 (4.9 ± 0.7) and OCN (17.2 ± 3.6) in LPMSNs group were significantly higher than control group (P<0.05) . The results of Western blot showed that the expression of Runx2 in LPMSNs group (1.7 ± 0.3) was significantly higher than control group (t = 3.48, P = 0.0254) together with the expression of OCN (1.69±0.21) in LPMSNs group (t = 5.71, P = 0.0047) at the 14th day.

Conclusions

The modified LPMSNs had large specific surface area, pore volume and hydrophilic surface, which is suitable for loading large molecular weight proteins or cytokines. LPMSNs could induce the osteogenic differentiation of rat BMSCs without cytotoxicity. Therefore, LPMSNs is a promising biomaterial for bone regeneration.

表1 实时荧光定量聚合酶链反应分析的引物序列
图1 扩孔介孔硅纳米粒子(LPMSNs)透射电镜图
图2 扩孔介孔硅纳米粒子(LPMSNs)的N2吸附解吸附和孔容孔径分析图
图3 扩孔介孔硅纳米粒子(LPMSNs)的傅里叶红外光谱(FTIR)图
图4 扩孔介孔硅纳米粒子(LPMSNs)热重分析重量-温度变化曲线
图5 骨髓间充质干细胞(BMSCs)细胞鉴定结果
图6 不同浓度扩孔介孔硅纳米粒子(LPMSNs)细胞毒性细胞计数试剂盒(CCK-8)法检测结果图
图7 各组成骨诱导矿化结节茜素红染色结果图
图8 各组成骨相关基因表达
图9 各组成骨分化相关基因蛋白水平的表达
[1]
Shi M,Zhou Y,Shao J,et al. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres[J]. Acta Biomater,2015(21):178-189.
[2]
Neumann A,Christel A,Kasper C,et al. BMP2-loaded nanoporous silica nanoparticles promote osteogenic differentiation of human mesenchymal stem cells[J]. RSC Advances,2013,3(46):24222-24230.
[3]
Gan Q,Zhu J,Yuan Y,et al. A dual-delivery system of pH-re-sponsive chitosan-functionalized mesoporous silica nanoparticles bearing BMP-2 and dexamethasone for enhanced bone regenera-tion[J]. J Mater Chem B,2015,3(10):2056-2066.
[4]
Kaiser C,Buchel G,Ludtke S,et al. Processing of microporous/mesoporous submicron-size silica spheres by means of a template-supported synthesis[J]. Royal Socienty of Chemistry,1997,213(7):406-412.
[5]
Colon G,Ward BC,Webster TJ. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2[J]. J Biomed Mater Res A,2006,78(3):595-604.
[6]
Webster TJ,Schadler LS,Siegel RW,et al. Mechanisms of enhanced osteoblast adhesive on nanophase alumina involve vitronectin[J]. Tissue Eng,2001,7(3):291-301.
[7]
Guo X,Gough JE,Xiao P,et al. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response[J]. J Biomed Mater Res A,2007,82(4):1022-1032.
[8]
Zhao G,Zinger O,Schwartz Z,et al. Osteoblast-like cells are sensitive to submicron-scale surface structure[J]. Clin Oral Implants Res,2006,17(3):258-264.
[9]
Zhao Y,Zhang Y,Ning F,et al. Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology[J]. J Biomed Mater Res B Appl Biomater,2007,83(1):121-126.
[10]
Li B,Chen X,Guo B,et al. Fabrication and cellular biocompati-bility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure[J]. Acta Biomater,2009,5(1):134-143.
[11]
Hornez JC,Chai F,Blanchemain N,et al. Biocompatibility improvement of pure hydroxyapatite(HA)with different porosity[J]. Key Eng Mater,2007(330):927-930.
[12]
Veiseh O,Gunn JW,Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging[J]. Adv Drug Deliv Rev,2010,62(3):284-304.
[13]
Harris JM,Chess RB. Effect of pegylation on pharmaceuticals[J]. Nat Rev Drug Discov,2003,2(3):214-221.
[14]
Zhang Y,Hu L,Yu D,et al. Influence of silica particle internal-ization on adhesion and migration of human dermal fibroblasts[J]. Biomaterials,2010,31(32):8465-8474.
[15]
Napierska D,Thomassen LC,Rabolli V,et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells[J]. Small,2009,5(7):846-853.
[16]
He Q,Zhang Z,Gao Y,et al. Intracellular iocalization and cyto-toxicity of spherical mesoporous silica nano-and microparticles[J]. Small,2009,23(5):2722-2729.
[17]
Tao Z,Morrow MP,Asefa T,et al. Mesoporous silica nanoparticles inhibit cellular respiration[J]. Nano Letters,2008,8(5):1517-1526.
[18]
Nielsen FH,Poellot R. Dietary silicon affects bone turnover differently in ovariectomized and sham-operated growing rats[J]. J Trace Elem Exp Med,2004,17(3):137-149.
[19]
Reffitt DM,Ogston N,Jugdaohsingh R,et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentia-tion in human osteoblast-like cells in vitro[J]. Bone,2003,32(2):127-135.
[20]
Han P,Wu C,Xiao Y. The effect of silicate ions on proliferation,osteogenic differentiation and cell signalling pathways(WNT and SHH)of bone marrow stromal cells[J]. Biomaterials Science,2013,1(4):379-392.
[21]
Zhou X,Moussa FM,Mankoci S,et al. Orthosilicic acid Si(OH)4 stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-κB activation[J]. Acta Biomater,2016(39):192-202.
[22]
Wu C,Chang J,Ni S,et al. In vitro bioactivity of akermanite ceramics[J]. J Biomed Mater Res A,2006,76(1):73-80.
[23]
Guo Z,Liu XM,Ma L,et al. Effects of particle morphology,pore size and surface coating of mesoporous silica on Naproxen dissolution rate enhancement[J]. Colloids Surf B Biointerfaces,2013(101):228-235.
[1] 谢卓晏, 罗远利, 乔斌, 李锦瑞, 周志益, 王志刚, 任建丽. 肽功能化载GOD智能响应型相变纳米粒用于乳腺癌超声诊疗的实验研究[J]. 中华医学超声杂志(电子版), 2022, 19(08): 837-846.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[4] 姜博庸, 韩长旭. 间充质干细胞外泌体促进软骨再生的潜在机制研究[J]. 中华关节外科杂志(电子版), 2023, 17(01): 44-51.
[5] 黄涛, 方红育, 周少怀, 卞峰, 李宏亮, 任敏, 范明宇, 汪平, 谢西茜, 张莹, 黄娅芬, 李静. 外泌体对大鼠骨关节炎软骨细胞凋亡的影响[J]. 中华关节外科杂志(电子版), 2021, 15(04): 423-431.
[6] 凡军, 曹丽萍. 异鼠李素激活p38信号促进鼠间充质干细胞成骨分化[J]. 中华关节外科杂志(电子版), 2021, 15(04): 432-437.
[7] 陈玉书, 谢慧峰, 张燕红, 白波, 陈艺, 张姝江. 甲状旁腺激素在骨软骨组织中的应用进展[J]. 中华关节外科杂志(电子版), 2021, 15(02): 214-218.
[8] 曹涛, 陶克. 脂肪间充质干细胞外泌体促进创面血管再生的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(02): 154-158.
[9] 李曼, 朱威, 张海萍. 不同来源间充质干细胞外泌体在皮肤损伤修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(06): 515-519.
[10] 沈括, 张锦鑫, 王洪涛, 胡大海. 脂肪间充质干细胞外泌体促进创面修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(03): 260-264.
[11] 杨霄彦, 郝春光, 李俊亮, 符雪, 王凌峰. 微孔化羊ADM复合hUCMSC促进创面修复的机制研究[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 97-103.
[12] 赵文杰, 张文捷, 张亮, 石鹏志, 胡满, 张钰, 王平川, 王俊武. 间充质干细胞来源外泌体在椎间盘退变修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 153-157.
[13] 赵路, 张哲儒, 贾骏麒, 宗春琳, 景莉, 郭凯, 田磊. M2型巨噬细胞抑制放射后骨髓间充质干细胞向肌成纤维细胞转化的实验研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 198-206.
[14] 郑慧敏, 夏贤友, 刘梦, 姚晓雨, 隋磊. 整联蛋白在骨重建中的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 124-128.
[15] 中华医学会骨科学分会, 邢军超, 毕龙, 陈林, 董世武, 高梁斌, 侯天勇, 侯志勇, 黄伟, 靳慧勇, 李岩, 李忠海, 刘鹏, 刘曦明, 罗飞, 马锋, 沈杰, 宋锦璘, 唐佩福, 吴新宝, 徐宝山, 许建中, 徐永清, 颜滨, 杨鹏, 叶青, 殷国勇, 于腾波, 曾建成, 张长青, 张英泽, 张泽华, 赵枫, 周跃, 朱芸, 邹俊. 自体骨髓富集骨修复技术临床应用专家共识(2023版)[J]. 中华卫生应急电子杂志, 2023, 09(03): 129-141.
阅读次数
全文


摘要