切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2012, Vol. 6 ›› Issue (03) : 266 -271. doi: 10.3877/cma.j.issn.1674-1366.2012.03.008

基础研究

羟基磷灰石涂层处理的多孔镍钛合金溶血性及细胞黏附性评价
石新莹1, 田恬1, 毛学理1, 张静娴2, 张新平3,(), 赵克1,()   
  1. 1.510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2.510055 广州,中山大学光华口腔医学院·附属口腔医院 暨南大学化学系
    3.510055 广州,华南理工大学材料科学与工程学院金属材料系
  • 收稿日期:2010-04-18 出版日期:2012-06-01
  • 通信作者: 张新平, 赵克
  • 基金资助:
    国家自然科学基金(50871039)广东省自然科学基金(10151064101000017)

Effect of hydroxyapatite coated porous NiTi alloy on hemolysis and cellular adhesion properties

Xin-ying SHI1, Tian TIAN1, Xue-li MAO1, Jing-xian ZHANG1, Xin-ping ZHANG,1(), Ke ZHAO1,()   

  1. 1.Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2010-04-18 Published:2012-06-01
  • Corresponding author: Xin-ping ZHANG, Ke ZHAO
引用本文:

石新莹, 田恬, 毛学理, 张静娴, 张新平, 赵克. 羟基磷灰石涂层处理的多孔镍钛合金溶血性及细胞黏附性评价[J/OL]. 中华口腔医学研究杂志(电子版), 2012, 6(03): 266-271.

Xin-ying SHI, Tian TIAN, Xue-li MAO, Jing-xian ZHANG, Xin-ping ZHANG, Ke ZHAO. Effect of hydroxyapatite coated porous NiTi alloy on hemolysis and cellular adhesion properties[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2012, 6(03): 266-271.

目的

通过研究经羟基磷灰石(HA)涂层处理后多孔镍钛(NiTi)合金的溶血率及成骨细胞在其表面的附着、增殖及分化情况,评价其体外生物相容性。

方法

测定经HA 涂层处理的圆盘状多孔NiTi 合金(NiTi-HA 组;直径10 mm,厚2 mm)的生物相容性,未经涂层处理的多孔NiTi合金(NiTi 组)及致密纯钛(Ti 组)试样设为对照组。 采用分光光度法分析其溶血性能;将成骨细胞接种于试样表面,用扫描电镜(SEM)观察成骨细胞黏附形态,MTS 法及碱性磷酸酶(ALP)试剂检测细胞附着、增殖情况及ALP 活性,对数据进行重复测量方差分析。

结果

NiTi-HA 组、NiTi 组及Ti 组试样的溶血率分别为(0.30 ± 0.11)%、(0.51 ± 0.07)%及(0.27 ± 0.06)%,均低于国家标准(YY/T0127.1)规定的5%。 SEM 观察显示,NiTi-HA 组及NiTi 组试样细胞黏附形态良好。 NiTi-HA组试样表面细胞附着及增殖数量均高于NiTi 组试样(P 值分别为0.000 与0.001)。 NiTi-HA 组及NiTi 组试样表面细胞ALP 活性无差异(P = 1),但均高于Ti 组试样(P 值分别为0.001 与0.0004)。

结论

NiTi-HA 组、NiTi 组及Ti 组试样均无溶血作用;NiTi-HA 组较NiTi 组更有利于成骨细胞附着和增殖,且ALP 活性均高于纯钛。

Objective

To investigate the biocompatibility of the HA coated porous NiTi alloys in vitro. Hemolysis rate, cell attachment, proliferation, and ALP activity of the human fetal osteoblastic 1.19 cell line (hFOB 1.19) cultured on the HA coated porous NiTi alloys were measured.

Methods

A series of biocompatibility tests of porous NiTi alloy disc-shaped samples (10 mm in diameter and 2 mm in thickness) coated with HA were performed, and the untreated porous NiTi alloy and pure titanium samples were used for a comparative study. The hemolysis of all samples was tested by spectrophotometry.Scanning electron microscope (SEM) was used to observe morphology of hFOB 1.19 incubating on the samples, and MTS method and ALP kit were used to test cell attachment, proliferation and ALP activity.Repeated measurements were carried out with analysis of variance on the data.

Results

Hemolysis rates of the untreated NiTi alloy, HA-coated porous NiTi alloy and pure titanium samples are (0.30 ± 0.11)%,(0.51 ± 0.07)% and (0.27 ± 0.06)%, respectively, which are lower than 5% and acceptable according to the YY/T0127.1 standard. The SEM observation revealed that the hFOB 1.19 attached and spread well on the HA-coated porous NiTi alloy. The cell attachment and cell proliferation tests results showed that cells were better attached (P=0.000) and proliferated (P=0.001) on the HA-coated NiTi alloy samples than on the untreated NiTi alloy samples. ALP activity experimental results showed no significant difference between the HA-coated and untreated NiTi sample groups (P=1), but the samples in both groups exhibited higher ALP activity than the pure titanium samples (P=0.001, P=0.0004),respectively.

Conclusions

The results indicated that the HA-coated NiTi alloy and untreated NiTi alloy samples showed no hemolysis effect; HA coating can enhance the attachment and proliferation of hFOB 1.19 on the porous NiTi alloy, and ALP activity of the HA-coated and untreated porous NiTi alloys was higher than that of pure Ti.

图1 各实验组的溶血率
图2 HA 涂层的多孔NiTi 合金组的成骨细胞黏附形态(SEM × 3000)
图3 多孔NiTi 合金组成骨细胞黏附形态(SEM × 3000)
图4 成骨细胞在试样表面的附着情况
图5 成骨细胞在试样表面的增殖情况
图6 成骨细胞在试样表面的碱性磷酸酶活性
1
Bansiddhi A, Sargean t TD, Stupp SI, et al. Porous NiTi for bone implants: a review. Acta Biomater, 2008,4(4):773-782.
2
Zhu SL, Yang XJ, Chen MF, et al. Effect of porous NiTi alloy on bone formation: A comparative investigation with bulk NiTi alloy for 15 weeks in vivo. Mater Sci Eng C, 2008,28(8):1271-1275.
3
Jiang HC, Rong LJ. Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method. Surf Coat Technol, 2006,201(3-4):1017-1021.
4
Zhang JX, Guan RF, Zhang XP. Synthesis and characterization of sol-gel hydroxyapatite coatings deposited on porous NiTi alloys. J Alloys Compd, 2011,509(13):4643-4648.
5
Li DS, Zhang YP, Eggeler G, et al. High porosity and highstrength porous NiTi shape memory alloys with controllable pore characteristics. J Alloys Compd, 2009,470(1-2):L1-L5.
6
Bandyopadhyay A, Espana F, Balla VK, et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater, 2010,6(4):1640-1648.
7
Sevilla P, Aparicio C, Planell JA, et al. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. J Alloys Compd, 2007,439(1):67-73.
8
Liu X, Wu S, Yeung KW, et al. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials, 2011,32(2):330-338.
9
Thierry B, Winnik FM, Merhi Y, et al. Biomimetic hemocompatible coatings through immobilization of hyaluronan derivatives on metal surfaces. Langmuir, 2008,24(20):11834-11841.
10
Bhattarai SR, Khalil KA, Dewidar M, et al. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. J Biomed Mater Res Part A,2008,86A(2):289-299.
11
Simon M, Lagneau C, Moreno J, et al. Corrosion resistance and biocompatibility of a new porous surface for titanium implants. Eur J Oral Sci, 2005,113(6):537-545.
12
Li CY, Yang XJ, Zhang LY, et al. In vivo histological evaluation of bioactive NiTi alloy after two years implantation.Mater Sci n Eng C, 2007,27(1):122-126.
13
Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res, 2001,57(2):258-267.
14
Wu C, Ramaswamy Y, Soeparto A, et al. Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. J Biomed Mater Res Part A, 2008,86A(2):402-410.
15
Roy M, Bandyopadhyay A, Bose S. Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol, 2011,205(8-9):2785-2792.
16
Meirelles L, Arvidsson A, Andersson M, et al. Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A, 2008,87(2):299-307.
17
Rosa AL, Crippa GE, de Oliveira PT, et al. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy. Clin Oral Implants Res, 2009,20(5):472-481.
18
St-Pierre JP, Gauthier M, Lefebvre LP, et al. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. Biomaterials, 2005,26(35):7319-7328.
19
Wu S, Liu X, Chan YL, et al. Nickel release behavior,cytocompatibility, and superelasticity of oxidized porous singlephase NiTi. J Biomed Mater Res Part A, 2007,81A(4):948-955.
20
Silva TS, Machado DC, Viezzer C, et al. Effect of titanium surface roughness on human bone marrow cell proliferation and differentiation: An experimental study. Acta Cir Bras, 2009,24(3):200-205.
[1] 李帝均, 王斌. 肩袖损伤修复的生物材料选择及动物模型评价[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 118-124.
[2] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[3] 于承浩, 张益, 陈进利, 戚超, 李海峰, 于腾波. 肩袖补片在巨大肩袖损伤治疗中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2021, 15(02): 225-230.
[4] 黄弘轩, 白波, 赖琛, 王瑛, 陈艺, 张姝江. 高分子修饰细菌纤维素细胞相容性的初步研究[J/OL]. 中华关节外科杂志(电子版), 2020, 14(01): 63-67.
[5] 张廷帅, 邹健宇, 陈汉政, 刘日许, 郑仕聪, 陈艺, 张姝江, 姚咏嫦. 三维共培养体系促进去分化的软骨细胞再分化的实验研究[J/OL]. 中华关节外科杂志(电子版), 2019, 13(06): 693-698.
[6] 安明, 董川, 王波, 王海鹏, 陈佳, 祁鹏, 马保安. 非骨水泥假体在全膝关节置换术中的应用进展[J/OL]. 中华关节外科杂志(电子版), 2019, 13(02): 225-229.
[7] 贾古友, 刘树民, 王晗, 唐绪军, 王晓光, 刘震, 胡永成. 抗菌涂层改性预防骨科内植物感染生物膜形成的研究进展[J/OL]. 中华关节外科杂志(电子版), 2018, 12(04): 544-550.
[8] 王晟, 许卓然, 夏德萌, 李磊, 许硕贵. 穿皮骨整合截肢假体与上皮细胞生长迁移的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(02): 166-169.
[9] 杨城, 李祖儿, 刘青, 赵渊, 徐崇燕, 苏军, 张文云. 新型三维复合骨修复支架的制备工艺及其生物学性能[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 219-229.
[10] 陈俊兰, 吴纪楠, 彭伟, 陈觉尧, 郑巧仪. 个体化假体复合组织工程技术修复兔下颌骨缺损[J/OL]. 中华口腔医学研究杂志(电子版), 2019, 13(06): 328-335.
[11] 李龙飞, 李志鹏, 刘润恒, 陈卓凡. 不同烧结温度对猪骨羟基磷灰石理化性能的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2017, 11(03): 164-168.
[12] 姚兆友, 王栋. 羟基磷灰石生物陶瓷联合口腔修复膜在颌骨囊肿手术中应用[J/OL]. 中华口腔医学研究杂志(电子版), 2016, 10(04): 277-280.
[13] 于茜, 周建辉, 赵小淋, 谢大洋, 曹雪莹. 血液净化膜材料的临床发展[J/OL]. 中华肾病研究电子杂志, 2021, 10(02): 103-108.
[14] 邬波, 柳椰, 马旭, 智春升, 杜明昌, 翟良全, 杨政博, 王佳媛, 王译晗. 3D打印胶原/羟基磷灰石支架对骨髓间充质干细胞成骨分化的作用研究[J/OL]. 中华老年骨科与康复电子杂志, 2020, 06(03): 123-127.
[15] 谭亚运, 张民. 硅酸盐/磷酸盐复合型骨水泥的研究现状及新进展[J/OL]. 中华临床医师杂志(电子版), 2017, 11(13): 1993-1996.
阅读次数
全文


摘要