切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2019, Vol. 13 ›› Issue (06) : 328 -335. doi: 10.3877/cma.j.issn.1674-1366.2019.06.002

所属专题: 文献

基础研究

个体化假体复合组织工程技术修复兔下颌骨缺损
陈俊兰1, 吴纪楠1,(), 彭伟2, 陈觉尧1, 郑巧仪1   
  1. 1. 中山市人民医院口腔分院 528403
    2. 中山大学附属第一医院,广州 510080
  • 收稿日期:2019-09-02 出版日期:2019-12-01
  • 通信作者: 吴纪楠

An experimental study of rabbit mandibular defect reconstruction with individualized prosthesis and tissue engineering

Junlan Chen1, Jinan Wu1,(), Wei Peng2, Jueyao Chen1, Qiaoyi Zheng1   

  1. 1. Hospital of Stomatology, People′s Hospital, Zhongshan 528403, China
    2. The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
  • Received:2019-09-02 Published:2019-12-01
  • Corresponding author: Jinan Wu
  • About author:
    Corresponding author: Wu Jinan, Email:
  • Supported by:
    National Natural Science Foundation of China(81371111); Science and Technology Plan of Guangdong Province(2008B030301291); Zhongshan Science and Technology Plan(2019B1098)
引用本文:

陈俊兰, 吴纪楠, 彭伟, 陈觉尧, 郑巧仪. 个体化假体复合组织工程技术修复兔下颌骨缺损[J]. 中华口腔医学研究杂志(电子版), 2019, 13(06): 328-335.

Junlan Chen, Jinan Wu, Wei Peng, Jueyao Chen, Qiaoyi Zheng. An experimental study of rabbit mandibular defect reconstruction with individualized prosthesis and tissue engineering[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2019, 13(06): 328-335.

目的

研究快速成型(RP)技术辅助下制作的个体化假体复合珊瑚羟基磷灰石(CHA)、重组人骨形成蛋白2(rhBMP-2)修复兔下颌骨缺损的成骨效果。

方法

以27只新西兰大白兔为实验对象,随机数字表法平均分成3组(每组9只),全部建立下颌骨连续性缺损模型,并在兔下颌骨缺损区分别植入个体化假体+自体骨(A组)、个体化假体+CHA(B组)、个体化假体+CHA+rhBMP-2(C组)。分别于术后4、12、24周3个时间点处死动物取材,进行大体标本观察,以及骨钙素(OC)、Ⅰ型胶原(COL-1)的免疫组化观察,分别比较各组修复骨缺损的能力,并对实验数据进行重复测量设计资料的单因素方差分析。

结果

术后24周各组实验兔外形均对称,通过OC及COL-1的吸光度检测,骨缺损区均有大量新骨形成,A组(0.537 ± 0.010)、C组(0.530 ± 0.010)可见大量骨小梁及编织骨结构,缺损区的新骨OC、COL-1的免疫组化观察基本一致,差异无统计学意义(t = 0.007,P>0.05);但A组强于B组(0.415 ± 0.009,t = 0.122,P<0.001);C组也强于B组(t = 0.121,P<0.001),差异均有统计学意义。

结论

在兔下颌骨缺损修复中,通过RP技术和组织工程技术相结合,CHA复合rhBMP-2后成骨能力明显增强,成骨效能肯定,为后期的临床应用提供可靠的实验基础。

Objective

To evaluate the effect of individualized prosthesis combined with coralline hydroxyapatite (CHA) and recombinant human bone morphogenetic protein-2 (rhBMP-2) on the reconstruction of rabbit mandibular defect with the aid of rapid prototyping (RP) .

Methods

The radial defect models were made in 27 rabbits, which were evenly divided into 3 groups randomly. Individualized prostheses were obtained with RP. The 3 groups were treated with different materials: group A, individualized prostheses with autogenous bone; group B, individualized prostheses with CHA; group C, individualized prostheses with CHA and rhBMP-2. The measurement of bone mineral density (BMD) and the detection of osteocalcin (OC) and collagen Ⅰ (COL-1) with immunohistochemical staining were performed in 4, 12, and 24 weeks after the operation so as to compare the capacity of bone reconstruction among the three groups. Data were analyzed with One-Way ANOVA.

Results

Both group A (0.537 ± 0.010) and group C (0.530 ± 0.010) showed a large number of trabecular and woven bone, whereas the contents of OC and COL-1 in the defect area were similar (t = 0.007, P>0.05) , both of which were significantly higher than group B (0.415 ± 0.009) (tAB = 0.122, PAB<0.001; tAB = 0.121, PAB<0.001) .

Conclusions

Upon the individualized three-dimensional titanium with RP, CHA combined with rhBMP-2 was found to have an improved osteoinductive ability, leading to a satisfactory recovery in both the contour and function of rabbit mandibles, which provided a reliable basis for individualized functional reconstruction of mandibular defects.

图1 制备完成的重组人骨形成蛋白2(rhBMP-2)和珊瑚羟基磷灰石(CHA)的复合物
图6 个体化假体和珊瑚羟基磷灰石(CHA)/重组人骨形成蛋白2(rhBMP-2)修复兔下颌骨缺损区
图7 不同时间点各组骨移植材料植入实验兔下颌骨缺损后骨钙素的表达(免疫组化染色 × 200) 术后4周:图A、图B、图C示弱阳性(+);术后12周:图D、图E、图F示阳性(++);术后24周:图G、图H、图I示强阳性(+++)
图8 三组骨移植材料植入实验兔下颌骨缺损后不同时间点骨钙素的平均吸光度(A)值比较
表1 不同时间点各组骨移植材料植入实验兔下颌骨缺损后骨钙素的图像分析结果(A值, ± s
图9 不同时间点各组骨移植材料植入兔下颌骨缺损后Ⅰ型胶原的表达(免疫组化 × 200) 术后4周:图A、图B、图C示弱阳性(+);术后12周:图D、图E、图F示阳性(++);术后24周:图G、图H、图I示强阳性(+++)
图10 三组骨移植材料植入实验兔下颌骨缺损后不同时间点Ⅰ型胶原的平均吸光度(A)值比较
表2 不同时间点各组骨移植材料植入兔下颌骨缺损后Ⅰ型胶原的图像分析结果(A值, ± s
[1]
Lee WB, Choi WH, Lee HG,et al. Mandibular reconstruction with a ready-made type and a custom-made type titanium mesh after mandibular resection in patients with oral cancer[J]. Maxillofac Plast Reconstr Surg,2018,40(1): 35. DOI: 10.1186/s40902-018-0175-z.
[2]
王忠东,陈俊兰,陈觉尧,等.个体化钛支架复合珊瑚羟基磷灰石和重组人骨形成蛋白2修复兔下颌骨缺损[J/CD].中华口腔医学研究杂志(电子版),2012,6(4): 336-341. DOI: 10.3877/cma.j.issn.1674-1366.2012.04.006.
[3]
Khodakaram-Tafti A, Mehrabani D, Shaterzadeh-Yazdi H,et al. Tissue Engineering in Maxillary Bone Defects[J]. World J Plast Surg,2018,7(1): 3-11.
[4]
Wu J, Wang Q, Fu X,et al. Influence of Immunogenicity of Allogeneic Bone Marrow Mesenchymal Stem Cells on Bone Tissue Engineering[J]. Cell Transplant,2016,25(2): 229-242. DOI: 10.3727/096368915X687967.
[5]
Kalaignan P, Mohan JS, Jayakumar A. Assessment of Oral Health-Related Quality of Life for Complex Mandibular Defects Rehabilitated with Computer-guided Implant Restoration[J]. J Int Soc Prev Community Dent,2018,8(3): 277-281. DOI: 10.4103/jispcd.JISPCD_74_18.
[6]
Gravvanis A, Apostolou K, Anterriotis D,et al. Single stage aesthetic and functional reconstruction of composite facial gunshot wound with a chimeric functioning muscle and fibular osseous flap. Case report and review of the literature[J]. Microsurgery,2017,37(6): 674-679. DOI: 10.1002/micr.30140.
[7]
Lin X, Hunziker EB, Liu T,et al. Enhanced biocompatibility and improved osteogenesis of coralline hydroxyapatite modified by bone morphogenetic protein 2 incorporated into a biomimetic coating[J]. Mater Sci Eng C Mater Biol Appl,2019,96: 329-336. DOI: 10.1016/j.msec.2018.11.017.
[8]
Senta H, Park H, Bergeron E,et al. Cell responses to bone morphogenetic proteins and peptides derived from them:biomedical applications and limitations[J]. Cytokine Growth Factor Rev,2009,20(3): 213-222. DOI: 10.1016/j.cytogfr.2009.05.006.
[9]
Zhou M, Peng X, Mao C,et al. The Value of SPECT/CT in Monitoring Prefabricated Tissue-Engineered Bone and Orthotopic rhBMP-2 Implants for Mandibular Reconstruction[J]. PLoS One,2015,10(9): e0137167. DOI: 10.1371/journal.pone.0137167.
[10]
Sales PHDH, Cetira Filho EL, Oliveira Neto JQ,et al. Rapid Prototyping as an Auxiliary in Mandibular Reconstructions[J]. J Craniofac Surg,2017,28(8): e744-e745. DOI: 10.1097/SCS.0000000000003892.
[11]
Kratz SRA, Eilenberger C, Schuller P,et al. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems[J]. Sci Rep,2019,9(1): 9287. DOI: 10.1038/s41598-019-45633-x.
[12]
Kresnoadi U, Rahmania PN, Caesar HU,et al. The role of the combination of Moringa oleifera leaf extract and demineralized freeze-dried bovine bone xenograft(xenograft)as tooth extraction socket preservation materials on osteocalcin and transforming growth factor-beta 1 expressions in alveolar bone of Cavia cobaya [J]. J Indian Prosthodont Soc,2019,19(2): 120-125. DOI: 10.4103/jips.jips_251_18.
[13]
程捷瑶,王美娟,马红,等.脂联素通过腺苷酸激活蛋白激酶途径抑制大鼠肝星状细胞氧化应激并调控转化生长因子β1和Ⅰ型胶原表达[J].中华肝脏病杂志,2015,23(1): 69-72. DOI: 10.3760/cma.j.issn.1007-3418.2015.01.016.
[1] 李建平, 张兴, 彭伟, 陈松龄. 个体化模板在单侧颧眶颌复合体骨折复位中的临床应用[J]. 中华口腔医学研究杂志(电子版), 2016, 10(06): 414-420.
[2] 姚兆友, 王栋. 羟基磷灰石生物陶瓷联合口腔修复膜在颌骨囊肿手术中应用[J]. 中华口腔医学研究杂志(电子版), 2016, 10(04): 277-280.
阅读次数
全文


摘要