切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2019, Vol. 13 ›› Issue (06) : 321 -327. doi: 10.3877/cma.j.issn.1674-1366.2019.06.001

所属专题: 口腔医学 文献

中青年专家笔谈

器官型口腔黏膜感染模型在宿主-微生物关系研究的应用与展望
马皓祯1, 李晓岚1,()   
  1. 1. 中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2019-10-18 出版日期:2019-12-01
  • 通信作者: 李晓岚

The applications and perspectives of organotypic oral mucosal infection model in host-pathogen interactions study

Haozhen Ma1, Xiaolan Li1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2019-10-18 Published:2019-12-01
  • Corresponding author: Xiaolan Li
  • About author:
    Corresponding author: Li Xiaolan, Email:
  • Supported by:
    National Natural Science Foundation of China(11772361, 81400505)
引用本文:

马皓祯, 李晓岚. 器官型口腔黏膜感染模型在宿主-微生物关系研究的应用与展望[J]. 中华口腔医学研究杂志(电子版), 2019, 13(06): 321-327.

Haozhen Ma, Xiaolan Li. The applications and perspectives of organotypic oral mucosal infection model in host-pathogen interactions study[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2019, 13(06): 321-327.

构建体外口腔黏膜感染模型有助于研究口腔黏膜感染性疾病的发病机制与防治策略。器官型口腔黏膜感染模型以组织工程化口腔黏膜为基础,通过引入病原体提取物、接种浮游微生物或与细菌生物膜、唾液共培养,在体外模拟口腔微生物与宿主的相互作用。近年来,学者们通过该技术研究微生物对口腔黏膜疾病和牙周疾病的发生、发展作用及致病机理。本文将对器官型口腔黏膜感染模型的建立、研究进展与应用前景等进行阐述。

The construction of oral mucosa infection model in vitro is conducive to exploring the pathogenesis and prevention strategies of oral infectious diseases of oral mucosa. The organotypic oral mucosal infection model is based on the tissue-engineered oral mucosa, which is cocultured with the extraction of pathogens, planktonic microorganisms, biofilm or saliva, to mimic the interactions between the oral microbiome and the oral mucosa of the host. In recent years, researchers have used this technology to study the role of microbes in the development and pathogenesis of oral mucosal diseases and periodontal diseases. This article reviews the construction, recent advances and perspectives of the organotypic oral mucosa infection model.

图1 动态灌注生物反应器中构建器官型口腔黏膜感染模型的流程图[28] Perfusion chamber with sponge scaffold:有胶原海绵支架的灌注室;Fibroblast suspension:成纤维细胞悬液;Gingival fibroblasts(GFB-16):永生化人牙龈成纤维细胞GFB-16;Collagen sponge:胶原海绵;CM-DF12:成纤维细胞培养基(Dulbecco改良的Eagle培养基);Gingival epithelia(HGEK-16):永生化人牙龈上皮角质形成细胞HGEK-16;Feeding medium 1:培养基1;Monocytes suspension:单核细胞悬液;Epithelial layer:上皮层;Feeding medium 2:培养基2;Monocyte(Mono-Mac-6):人单核细胞系Mono-Mac-6;Biofilm on the disc:圆盘上的生物膜;Ring:圆环;Feeding medium 3:培养基3
图2 种植体周围黏膜-生物膜模型的示意图[33] Biofilm:生物膜;Spacer:间隔物;Stratified epithelium:复层上皮;Collagen embedded fibroblasts:嵌入成纤维细胞的胶原蛋白;Titanium implant:钛种植体
[1]
Gao L, Xu T, Huang G,et al. Oral microbiomes:more and more importance in oral cavity and whole body[J]. Protein Cell,2018,9(5): 488-500. DOI: 10.1007/s13238-018-0548-1.
[2]
Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease[J]. Oral Dis,2017,23(3): 276-286. DOI: 10.1111/odi.12509.
[3]
孟凡皓,邵晓琳,宋宇,等.组织工程口腔黏膜发展近况[J].中国医学科学院学报,2017,39(6): 851-856. DOI: 10.3881/j.issn.1000-503X.2017.06.020.
[4]
Belibasakis GN, Meier A, Guggenheim B,et al. The ranklopg system is differentially regulated by supragingival and subgingival biofilm supernatants[J]. Cytokine,2011,55(1): 98-103. DOI: 10.1016/j.cyto.2011.03.009.
[5]
Donos N, Park JC, Vajgel A,et al. Description of the periodontal pocket in preclinical models:Limitations and considerations[J]. Periodontol 2000,2018,76(1): 16-34. DOI: 10.1111/prd.12155.
[6]
Fawzy El-Sayed KM, Dorfer CE. Animal models for periodontal tissue engineering:A knowledge-generating process[J]. Tissue Eng Part C Methods,2017,23(12): 900-925. DOI: 10.1089/ten.TEC.2017.0130.
[7]
Janus MM, Keijser BJ, Bikker FJ,et al. In vitro phenotypic differentiation towards commensal and pathogenic oral biofilms [J]. Biofouling,2015,31(6): 503-510. DOI: 10.1080/08927014.2015.1067887.
[8]
Hajishengallis G, Lamont RJ, Graves DT. The enduring importance of animal models in understanding periodontal disease[J]. Virulence,2015,6(3): 229-235. DOI: 10.4161/21505594.2014.990806.
[9]
Alfonso-Rodríguez CA, González-Andrades E, Jaimes-Parra BD,et al. Ex vivo and in vivo modulatory effects of umbilical cord wharton′s jelly stem cells on human oral mucosa stroma substitutes[J]. Histol Histopathol,2015,30(11): 1321-1332. DOI: 10.14670hh-11-628.
[10]
Dave JR, Tomar GB. Dental tissue-derived mesenchymal stem cells and their applications in tissue engineering[J]. Crit Rev Biomed Eng,2018,46(5): 429-468. DOI: 10.1615/CritRevBiomedEng.2018027342.
[11]
Buskermolen JK, Reijnders CM, Spiekstra SW,et al. Development of a full-thickness human gingiva equivalent constructed from immortalized keratinocytes and fibroblasts[J]. Tissue Eng Part C Methods,2016,22(8): 781-791. DOI: 10.1089/ten.tec.2016.0066.
[12]
Basso FG, Hebling J, Marcelo CL,et al. Development of an oral mucosa equivalent using a porcine dermal matrix[J]. Br J Oral Maxillofac Surg,2017,55(3): 308-311. DOI: 10.1016/j.bjoms.2016.09.019.
[13]
Kuo S, Kim HM, Wang Z,et al. Comparison of two decellularized dermal equivalents[J]. J Tissue Eng Regen Med,2018,12(4): 983-990. DOI: 10.1002/term.2530.
[14]
Conway JRW, Vennin C, Cazet AS,et al. Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology[J]. Sci Rep,2017,7(1): 16887. DOI: 10.1038/s41598-017-17177-5.
[15]
Dang JM, Leong KW. Natural polymers for gene delivery and tissue engineering[J]. Adv Drug Deliv Rev,2006,58(4): 487-499. DOI: 10.1016/j.addr.2006.03.001.
[16]
Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering[J]. Eur Cell Mater,2003,5: 1-16;discussion 16. DOI: 10.0000/PMID14562275.
[17]
Kinikoglu B, Rodriguez-Cabello JC, Damour O,et al. A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering[J]. J Mater Sci Mater Med,2011,22(6): 1541-1554. DOI: 10.1007/s10856-011-4315-6.
[18]
Almela T, Brook IM, Moharamzadeh K. Development of three-dimensional tissue engineered bone-oral mucosal composite models[J]. J Mater Sci Mater Med,2016,27(4): 65. DOI: 10.1007/s10856-016-5676-7.
[19]
Chai WL, Moharamzadeh K, Brook IM,et al. Development of a novel model for the investigation of implant-soft tissue interface [J]. J Periodontol,2010,81(8): 1187-1195. DOI: 10.1902/jop.2010.090648.
[20]
Liu X, Zhang Z, Pan S,et al. Interaction between the wnt/β-catenin signaling pathway and the emmprin/mmp-2,9 route in periodontitis[J]. J Periodontal Res,2018,53(5): 842-852. DOI: 10.1111/jre.12574.
[21]
Xiao L, Okamura H, Kumazawa Y. Three-dimensional inflammatory human tissue equivalents of gingiva[J]. J Vis Exp,2018(134): e57157. DOI: 10.3791/57157.
[22]
Oscarsson J, Claesson R, Lindholm M,et al. Tools of aggregatibacter actinomycetemcomitans to evade the host response[J]. J Clin Med,2019,8(7): E1079. DOI: 10.3390/jcm8071079.
[23]
Bedran TB, Mayer MP, Spolidorio DP,et al. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3(hbd-3)and cathelicidin(ll-37)in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts[J]. PloS one,2014,9(9): e106766. DOI: 10.1371/journal.pone.0106766.
[24]
de Carvalho Dias K, de Sousa DL, Barbugli PA,et al. Development and characterization of a 3d oral mucosa model as a tool for host-pathogen interactions[J]. J Microbiol Methods,2018,152: 52-60. DOI: 10.1016/j.mimet.2018.07.004.
[25]
Gursoy UK, Pöllänen M, Könönen E,et al. Biofilm formation enhances the oxygen tolerance and invasiveness of Fusobacterium nucleatum in an oral mucosa culture model[J]. J Periodontol,2010,81(7): 1084-1091. DOI: 10.1902/jop.2010.090664.
[26]
Guggenheim B, Giertsen E, Schupbach P,et al. Validation of an in vitro biofilm model of supragingival plaque[J]. J Dent Res,2001,80(1): 363-370. DOI: 10.1177/00220345010800011201.
[27]
Buskermolen JK, Janus MM, Roffel S,et al. Saliva-derived commensal and pathogenic biofilms in a human gingiva model [J]. J Dent Res,2018,97(2): 201-208. DOI: 10.1177/0022034517729998.
[28]
Bao K, Papadimitropoulos A, Akgul B,et al. Establishment of an oral infection model resembling the periodontal pocket in a perfusion bioreactor system[J]. Virulence,2015,6(3): 265-273. DOI: 10.4161/21505594.2014.978721.
[29]
Shaddox LM, Wiedey J, Calderon NL,et al. Local inflammatory markers and systemic endotoxin in aggressive periodontitis[J]. J Dent Res,2011,90(9): 1140-1144. DOI: 10.1177/0022034511413928.
[30]
Bao K, Belibasakis GN, Selevsek N,et al. Proteomic profiling of host-biofilm interactions in an oral infection model resembling the periodontal pocket[J]. Sci Rep,2015,5: 15999. DOI: 10.1038/srep15999.
[31]
Gursoy UK, Pöllänen M, Könönen E,et al. A novel organotypic dento-epithelial culture model:effect of Fusobacterium nucleatum biofilm on B-defensin-2,-3,and LL-37 expression [J]. J Periodontol,2012,83(2): 242-247. DOI: 10.1902/jop.2011.110177.
[32]
Pöllänen MT, Gursoy UK, Könönen E,et al. Fusobacterium nucleatum biofilm induces epithelial migration in an organotypic model of dento-gingival junction[J]. J Periodontol,2012,83(10): 1329-1335. DOI: 10.1902/jop.2012.110535.
[33]
Ingendoh-Tsakmakidis A, Mikolai C, Winkel A,et al. Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model[J]. Cell Microbiol,2019,21(10): e13078. DOI: 10.1111/cmi.13078.
[34]
Shang L, Deng D, Buskermolen JK,et al. Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function[J]. Sci Rep,2018,8(1): 16061. DOI: 10.1038/s41598-018-34390-y.
[35]
Morin MP, Grenier D. Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts[J]. Arch Oral Biol,2017,75: 89-99. DOI: 10.1016/j.archoralbio.2016.10.035.
[36]
Meier F, Freyer N, Brzeszczynska J,et al. Hepatic differentiation of human ipscs in different 3d models:A comparative study[J]. Int J Mol Med,2017,40(6): 1759-1771. DOI: 10.3892/ijmm.2017.3190.
[1] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[2] 危玲, 李会, 陈奕. 孕产妇产超广谱β-内酰胺酶的肠杆菌定植/感染与母婴传播研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 517-521.
[3] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[4] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[5] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[6] 李静如, 王江玲, 吴向阳. 简易负压引流在腹股沟疝术后浅部感染中的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 745-749.
[7] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[8] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[9] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[10] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[11] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[12] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[13] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[14] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要