切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 410 -417. doi: 10.3877/cma.j.issn.1674-1366.2025.06.010

综述

多基因风险评分在非综合征型唇腭裂风险预测中的研究进展
赵浩朗1, 万千雪1, 贾仲林2,()   
  1. 1四川大学华西口腔医学院,成都 610041
    2口腔疾病防治全国重点实验室,国家口腔医学中心,国家口腔疾病临床医学研究中心,四川大学华西口腔医院唇腭裂外科,成都 610041
  • 收稿日期:2025-08-27 出版日期:2025-12-01
  • 通信作者: 贾仲林

Research progress on polygenic risk scores for risk prediction of non-syndromic orofacial clefts

Haolang Zhao1, Qianxue Wan1, Zhonglin Jia2,()   

  1. 1West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2025-08-27 Published:2025-12-01
  • Corresponding author: Zhonglin Jia
  • Supported by:
    National Natural Science Foundation of China(82170919); Natural Science Foundation of Sichuan Province(2024NSFSC0649); Research and Develop Program, West China Hospital of Stomatology Sichuan University(RD-03-202301)
引用本文:

赵浩朗, 万千雪, 贾仲林. 多基因风险评分在非综合征型唇腭裂风险预测中的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(06): 410-417.

Haolang Zhao, Qianxue Wan, Zhonglin Jia. Research progress on polygenic risk scores for risk prediction of non-syndromic orofacial clefts[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2025, 19(06): 410-417.

作为最常见的先天性颅颌面发育畸形,非综合征性唇腭裂(NSOC)是由遗传易感性、环境暴露及基因-环境交互作用共同导致的复杂多基因疾病。全基因组关联研究(GWAS)已鉴定出众多与NSOC风险相关的单核苷酸多态性(SNP),但单个变异有限的效应值制约了其临床风险预测价值。多基因风险评分(PRS)通过整合多个SNP的效应值提供疾病风险信息,已在多种复杂疾病预测中展现出显著效能,但其在NSOC领域的应用仍处于起步阶段。本文对PRS在NSOC风险预测中的研究进展进行综述,并讨论了目前PRS应用过程中面临的挑战及未来发展方向。

As the most prevalent congenital craniofacial developmental anomalies, non-syndromic orofacial clefts (NSOC) are complex polygenic disorders arising from the interplay of genetic susceptibility, environmental exposures, and gene-environment interactions. Genome-wide association studies (GWAS) have identified numerous single nucleotide polymorphism (SNP) associated with NSOC risk. However, individual variants exhibit limited clinical utility for risk prediction due to their modest effect sizes. The polygenic risk score (PRS) aggregates the effects of SNP to provide disease-related risk information, which has demonstrated remarkable efficacy in disease prediction across various complex disorders. However, its application to NSOC remains in its infancy. This study reviews the advancements in PRS methodologies for predicting NSOC risk and discusses the current challenges and future directions for PRS development in this field.

图1 基于GWAS数据集构建PRS模型的基本流程(本图使用BioRender绘制) GWAS为全基因组关联研究;PRS为多基因风险评分;LD为连锁不平衡。
表1 多基因风险评分(PRS)的主要应用场景、相应疾病及代表性研究
表2 已公开发表的口腔疾病多基因风险评分(PRS)的相关研究
表3 亚、非、欧洲人群中独立开展的代表性多基因风险评分(PRS)研究
[1]
Li WY, Chen ZY, Xu WL, et al. Temporal trends in the prevalence of major birth defects in China:A nationwide population-based study from 2007 to 2021[J]. World J Pediatr202420(11):1145-1154. DOI:10.1007/s12519-024-00844-9.
[2]
Malic CC, Lam M, Donelle J, et al. The burden of psychiatric disorders associated with orofacial cleft pathology among children in Ontario,Canada[J]. J Plast Reconstr Aesthet Surg202384:422-431. DOI:10.1016/j.bjps.2023.06.019.
[3]
McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits:Consensus,uncertainty and challenges[J]. Nat Rev Genet20089(5):356-369. DOI:10.1038/nrg2344.
[4]
Nasreddine G, El Hajj J, Ghassibe-Sabbagh M. Orofacial clefts embryology,classification,epidemiology,and genetics[J]. Mutat Res Rev Mutat Res2021787:108373. DOI:10.1016/j.mrrev.2021.108373.
[5]
Babai A, Irving M. Orofacial clefts:Genetics of cleft lip and palate[J]. Genes202314(8):1603. DOI:10.3390/genes14081603.
[6]
Marigorta UM, Rodríguez JA, Gibson G, et al. Replicability and prediction:Lessons and challenges from GWAS[J]. Trends Genet201834(7):504-517. DOI:10.1016/j.tig.2018.03.005.
[7]
Alade A, Awotoye W, Butali A. Genetic and epigenetic studies in non-syndromic oral clefts[J]. Oral Dis202228(5):1339-1350. DOI:10.1111/odi.14146.
[8]
Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases[J]. Nature2009461(7265):747-753. DOI:10.1038/nature08494.
[9]
Thieme F, Henschel L, Hammond NL, et al. Extending the allelic spectrum at noncoding risk loci of orofacial clefting[J]. Hum Mutat202142(8):1066-1078. DOI:10.1002/humu.24219.
[10]
Igo RP Jr, Kinzy TG, Cooke Bailey JN. Genetic risk scores[J]. Curr Protoc Hum Genet2019104(1):e95. DOI:10.1002/cphg.95.
[11]
Udler MS, McCarthy MI, Florez JC, et al. Genetic risk scores for diabetes diagnosis and precision medicine[J]. Endocr Rev201940(6):1500-1520. DOI:10.1210/er.2019-00088.
[12]
Gladding PA, Legget M, Fatkin D, et al. Polygenic risk scores in coronary artery disease and atrial fibrillation[J]. Heart Lung Circ202029(4):634-640. DOI:10.1016/j.hlc.2019.12.004.
[13]
Wang XY, Wang LL, Xu L, et al. Evaluation of polygenic risk score for risk prediction of gastric cancer[J]. World J Gastrointest Oncol202315(2):276-285. DOI:10.4251/wjgo.v15.i2.276.
[14]
Yanes T, Young MA, Meiser B, et al. Clinical applications of polygenic breast cancer risk:A critical review and perspectives of an emerging field[J]. Breast Cancer Res202022(1):21. DOI:10.1186/s13058-020-01260-3.
[15]
Brown MA. Polygenic risk scores[J]. Semin Arthritis Rheu202464S:152330. DOI:10.1016/j.semarthrit.2023.152330.
[16]
Rao S, Yao Y, Bauer DE. Editing GWAS:Experimental approaches to dissect and exploit disease-associated genetic variation[J]. Genome Med202113(1):41. DOI:10.1186/s13073-021-00857-3.
[17]
Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J]. Nat Genet200941(4):473-477. DOI:10.1038/ng.333.
[18]
Ma L, Lou S, Miao Z, et al. Identification of novel susceptibility loci for non-syndromic cleft lip with or without cleft palate[J]. J Cell Mol Med202024(23):13669-13678. DOI:10.1111/jcmm.15878.
[19]
Avasthi KK, Muthuswamy S, Asim A, et al. Identification of novel genomic variations in susceptibility to nonsyndromic cleft lip and palate patients[J]. Pediatr Rep202113(4):650-657. DOI:10.3390/pediatric13040077.
[20]
Machado RA, Ayroza Rangel ALC, de Almeida Reis SR, et al. Evaluation of genome-wide association signals for nonsyndromic cleft lip with or without cleft palate in a multiethnic Brazilian population[J]. Arch Oral Biol2022135:105372. DOI:10.1016/j.archoralbio.2022.105372.
[21]
Adam Y, Sadeeq S, Kumuthini J, et al. Polygenic risk score in African populations:Progress and challenges[J]. F1000Res202211:175. DOI:10.12688/f1000research.76218.2.
[22]
王铖,戴俊程,孙义民,等. 遗传风险评分的原理与方法[J]. 中华流行病学杂志201536(10):1062-1064. DOI:10.3760/cma.j.issn.0254-6450.2015.10.005.
[23]
Choi SW, O′Reilly PF. PRSice-2:Polygenic risk score software for biobank-scale data[J]. GigaScience20198(7):giz082. DOI:10.1093/gigascience/giz082.
[24]
International Schizophrenia Consortium, Purcell SM, Wray NR, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder[J]. Nature2009460(7256):748-752. DOI:10.1038/nature08185.
[25]
Mavaddat N, Michailidou K, Dennis J, et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes[J]. Am J Hum Genet2019104(1):21-34. DOI:10.1016/j.ajhg.2018.11.002.
[26]
Konuma T, Okada Y. Statistical genetics and polygenic risk score for precision medicine[J]. Inflamm Regen202141(1):18. DOI:10.1186/s41232-021-00172-9.
[27]
Waples RS. Practical application of the linkage disequilibrium method for estimating contemporary effective population size:A review[J]. Mol Ecol Res202424(1):e13879. DOI:10.1111/1755-0998.13879.
[28]
Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction[J]. Circulation2007115(7):928-935. DOI:10.1161/CIRCULATIONAHA.106.672402.
[29]
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology1982143(1):29-36. DOI:10.1148/radiology.143.1.7063747.
[30]
Song L, Liu A, Shi J, et al. SummaryAUC:A tool for evaluating the performance of polygenic risk prediction models in validation datasets with only summary level statistics[J]. Bioinformatics201935(20):4038-4044. DOI:10.1093/bioinformatics/btz176.
[31]
Patel AP, Wang M, Ruan Y, et al. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease[J]. Nat Med202329(7):1793-1803. DOI:10.1038/s41591-023-02429-x.
[32]
Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps[J]. Nat Genet201850(11):1505-1513. DOI:10.1038/s41588-018-0241-6.
[33]
Jin G, Lv J, Yang M, et al. Genetic risk,incident gastric cancer,and healthy lifestyle:A Meta-analysis of genome-wide association studies and prospective cohort study[J]. Lancet Oncol202021(10):1378-1386. DOI:10.1016/S1470-2045(20)30460-5.
[34]
Ward J, Graham N, Strawbridge RJ, et al. Polygenic risk scores for major depressive disorder and neuroticism as predictors of antidepressant response:Meta-analysis of three treatment cohorts[J]. PLoS ONE201813(9):e0203896. DOI:10.1371/journal.pone.0203896.
[35]
Li X, Ploner A, Wang Y, et al. Clinical biomarkers and associations with healthspan and lifespan:Evidence from observational and genetic data[J]. EBioMedicine202166:103318. DOI:10.1016/j.ebiom.2021.103318.
Fries N, Haworth S, Shaffer JR, et al. A polygenic score predicts caries experience in elderly swedish adults[J]. J Dent Res2024103(5):502-508. DOI:10.1177/00220345241232330.
[36]
Ricci M, Garoia F, Tabarroni C, et al. Association between genetic risk score and periodontitis onset and progression:A pilot study[J]. Arch Oral Biol201156(12):1499-1505. DOI:10.1016/j.archoralbio.2011.07.002.
[37]
Li W, Wang X, Tian Y, et al. A novel multi-locus genetic risk score identifies patients with higher risk of generalized aggressive periodontitis[J]. J Periodontol202091(7):925-932. DOI:10.1002/JPER.19-0135.
[39]
Fugmann C, Reid S, Pucholt P, et al. A high polygenic risk score is associated with SSA/SSB antibody positivity and early onset in primary Sjögren′s disease[J]. Rheumatology (Oxford)202464(7):4341-4346. DOI:10.1093/rheumatology/keae693.
[40]
Xu X, Wang B, Jiang Z, et al. Novel risk factors for craniofacial microsomia and assessment of their utility in clinic diagnosis[J]. Hum Mol Genet202130(11):1045-1056. DOI:10.1093/hmg/ddab055.
[41]
Chung CM, Hung CC, Lee CH, et al. Variants in FAT1 and COL9A1 genes in male population with or without substance use to assess the risk factors for oral malignancy[J]. PLoS One201914(1):e0210901. DOI:10.1371/journal.pone.0210901.
[42]
Howe LJ, Hemani G, Lesseur C, et al. Evaluating shared genetic influences on nonsyndromic cleft lip/palate and oropharyngeal neoplasms[J]. Methods Mol Biol202044(8):924-933. DOI:10.1002/gepi.22343.
[43]
Howe LJ, Lee MK, Sharp GC, et al. Investigating the shared genetics of non-syndromic cleft lip/palate and facial morphology[J]. PLoS Genet201814(8):e1007501. DOI:10.1371/journal.pgen.1007501.
[44]
Indencleef K, Hoskens H, Lee MK, et al. The intersection of the genetic architectures of orofacial clefts and normal facial variation[J]. Front Genet202112:626403. DOI:10.3389/fgene.2021.626403.
[45]
Weinberg SM, Maher BS, Marazita ML. Parental craniofacial morphology in cleft lip with or without cleft palate as determined by cephalometry:A Meta-analysis[J]. Orthod Craniofac Res20069(1):18-30. DOI:10.1111/j.1601-6343.2006.00339.x.
[46]
Wilson-Nagrani C, Richmond S, Paternoster L. Non-syndromic cleft lip and palate polymorphisms affect normal lip morphology[J]. Front Genet20189:413. DOI:10.3389/fgene.2018.00413.
[47]
Ludwig KU, Böhmer AC, Bowes J, et al. Imputation of orofacial clefting data identifies novel risk loci and sheds light on the genetic background of cleft lip ± cleft palate and cleft palate only[J]. Hum Mol Genet201726(4):829-842. DOI:10.1093/hmg/ddx012.
[48]
Génin E. Missing heritability of complex diseases:Case solved?[J]. Hum Genet2020139(1):103-113. DOI:10.1007/s00439-019-02034-4.
[49]
Ishorst N, Henschel L, Thieme F, et al. Identification of de novo variants in nonsyndromic cleft lip with/without cleft palate patients with low polygenic risk scores[J]. Mol Genet Genomic Med202311(3):e2109. DOI:10.1002/mgg3.2109.
[50]
Yu Y, Alvarado R, Petty LE, et al. Polygenic risk impacts PDGFRA mutation penetrance in non-syndromic cleft lip and palate[J]. Hum Mol Genet202231(14):2348-2357. DOI:10.1093/hmg/ddac037.
[51]
Blanco R, Colombo A, Suazo J. Genetic risk score for nonsyndromic cleft lip with or without cleft palate for a Chilean population[J]. Genet Couns201425(2):143-149. DOI:10.1155/2014/509821.
[52]
Kang G, Baek SH, Kim YH, et al. Genetic risk assessment of nonsyndromic cleft lip with or without cleft palate by linking genetic networks and deep learning models[J]. Int J Mol Sci202324(5):4557. DOI:10.3390/ijms24054557.
[53]
Wang S, Shi J, Liu C, et al. Evidence of the folate-mediated one-carbon metabolism pathway genes in controlling the non-syndromic oral clefts risks[J]. Oral Dis202329(3):1080-1088. DOI:10.1111/odi.14068.
[54]
郭煌达,王斯悦,侯天姣,等. 基于中国人群全基因组关联研究的非综合征型唇腭裂风险预测研究[C]. 中华口腔医学会口腔遗传病与罕见病专业委员会.中华口腔医学会口腔遗传病与罕见病专业委员会第6次学术年会论文汇编.温州,2024:156. DOI:10.26914/c.cnkihy.2024.066189.
[55]
Li R, Chen Y, Ritchie MD, et al. Electronic health records and polygenic risk scores for predicting disease risk[J]. Nat Rev Genet202021(8):493-502. DOI:10.1038/s41576-020-0224-1.
[56]
Wand H, Lambert SA, Tamburro C, et al. Improving reporting standards for polygenic scores in risk prediction studies[J]. Nat2021591(7849):211-219. DOI:10.1038/s41586-021-03243-6.
[57]
Truong B, Hull LE, Ruan Y, et al. Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases[J]. Cell Genom20244(4):100523. DOI:10.1016/j.xgen.2024.100523.
[58]
王斯悦,彭和香,薛恩慈,等. 非综合征型唇腭裂的遗传预测模型研究进展[J]. 中华流行病学杂志202344(3):504-510. DOI:10.3760/cma.j.cn112338-20220624-00556.
[59]
Lim AJW, Tyniana CT, Lim LJ, et al. Robust SNP-based prediction of rheumatoid arthritis through machine-learning-optimized polygenic risk score[J]. J Transl Med202321(1):92. DOI:10.1186/s12967-023-03939-5.
[60]
Chung CW, Chou SC, Kao CM, et al. Application of machine learning algorithm for the prediction of lupus nephritis using SNP data,polygenic risk score,and electronic health record[J]. Health Informatics J202531(3):14604582251363510. DOI:10.1177/14604582251363510.
[61]
Peduzzi G, Felici A, Pellungrini R, et al. Explainable machine learning identifies a polygenic risk score as a key predictor of pancreatic cancer risk in the UK Biobank[J]. Dig Liver Dis202557(4):915-922. DOI:10.1016/j.dld.2024.11.010.
[62]
Lu X, Liu Z, Cui Q, et al. A polygenic risk score improves risk stratification of coronary artery disease:A large-scale prospective Chinese cohort study[J]. Eur Heart J202243(18):1702-1711. DOI:10.1093/eurheartj/ehac093.
[63]
Sandhu RK, Dron JS, Liu Y, et al. Polygenic risk score predicts sudden death in patients with coronary disease and preserved systolic function[J]. J Am Coll Cardiol202280(9):873-883. DOI:10.1016/j.jacc.2022.05.049.
[64]
Gu Y, Yan C, Wang T, et al. Construction and evaluation of the functional polygenic risk score for gastric cancer in a prospective cohort of the European population[J]. Chin Med J (Engl)2023136(14):1671-1679. DOI:10.1097/CM9.0000000000002716.
[65]
Ekoru K, Adeyemo AA, Chen G, et al. Genetic risk scores for cardiometabolic traits in sub-Saharan African populations[J]. Int J Epidemiol202150(4):1283-1296. DOI:10.1093/ije/dyab046.
[66]
Kelchtermans J, March ME, Mentch F, et al. Genetic modifiers of asthma response to air pollution in children:An African ancestry GWAS and PM2.5 polygenic risk score study[J]. Environ Res2025267:120666. DOI:10.1016/j.envres.2024.120666.
[67]
Zeiger JS, Beaty TH, Liang KY. Oral clefts,maternal smoking,and TGFA:A Meta-analysis of gene-environment interaction[J]. Cleft Palate Craniofac J200542(1):58-63. DOI:10.1597/02-128.1.
[68]
Romitti PA, Sun L, Honein MA, et al. Maternal periconceptional alcohol consumption and risk of orofacial clefts[J]. Am J Epidemiol2007166(7):775-785. DOI:10.1093/aje/kwm146.
[69]
Yakoob MY, Bateman BT, Ho E, et al. The risk of congenital malformations associated with exposure to β-blockers early in pregnancy:A Meta-analysis[J]. Hypertension201362(2):375-381. DOI:10.1161/HYPERTENSIONAHA.111.00833.
[70]
Badovinac RL, Werler MM, Williams PL, et al. Folic acid-containing supplement consumption during pregnancy and risk for oral clefts:A Meta-analysis[J]. Birt Defects Res A Clin Mol Teratol200779(1):8-15. DOI:10.1002/bdra.20315.
[71]
夏溦瑶,贾仲林. 维生素与唇腭裂发生相关性的研究进展[J]. 国际口腔医学杂志202350(6):632-638. DOI:10.7518/gjkq.2023094.
[72]
Briggs SEW, Law P, East JE, et al. Integrating genome-wide polygenic risk scores and non-genetic risk to predict colorectal cancer diagnosis using UK Biobank data:Population based cohort study[J]. BMJ2022379:e071707. DOI:10.1136/bmj-2022-071707.
[73]
Li L, Pang S, Starnecker F, et al. Integration of a polygenic score into guideline-recommended prediction of cardiovascular disease[J]. Eur Heart J202445(20):1843-1852. DOI:10.1093/eurheartj/ehae048.
[74]
Cheng X, Du F, Long X, et al. Genetic inheritance models of non-syndromic cleft lip with or without palate:From monogenic to polygenic[J]. Genes202314(10):1859. DOI:10.3390/genes14101859.
[75]
van Rooij IALM, Vermeij-Keers C, Kluijtmans LAJ, et al. Does the interaction between maternal folate intake and the methylenetetrahydrofolate reductase polymorphisms affect the risk of cleft lip with or without cleft palate?[J]. Am J Epidemiol2003157(7):583-591. DOI:10.1093/aje/kwg005.
[76]
Mostowska A, Hozyasz KK, Jagodzinski PP. Maternal MTR genotype contributes to the risk of non-syndromic cleft lip and palate in the Polish population[J]. Clin Genet200669(6):512-517. DOI:10.1111/j.1399-0004.2006.00618.x.
[77]
Hozyasz KK, Mostowska A, Surowiec Z, et al. Genetic polymorphisms of GSTM1 and GSTT1 in mothers of children with isolated cleft lip with or without cleft palate[J]. Przegl Lek200562(10):1019-1022.
[78]
Rubini M, Brusati R, Garattini G, et al. Cystathionine beta-synthase c.844ins68 gene variant and non-syndromic cleft lip and palate[J]. Am J Med Genet A2005136A(4):368-372. DOI:10.1002/ajmg.a.30812.
[79]
Park BY, Sull JW, Park JY, et al. Differential parental transmission of markers in BCL3 among Korean cleft case-parent trios[J]. J Prev Med Public Health200942(1):1-4. DOI:10.3961/jpmph.2009.42.1.1.
[80]
Sull JW, Liang KY, Hetmanski JB, et al. Excess maternal transmission of markers in TCOF1 among cleft palate case-parent trios from three populations[J]. Am J Med Genet A2008146A(18):2327-2331. DOI:10.1002/ajmg.a.32302.
[81]
Suazo J, Santos JL, Jara L, et al. Parent-of-origin effects for MSX1 in a Chilean population with nonsyndromic cleft lip/palate[J]. Am J Med Genet A2010152A(8):2011-2016. DOI:10.1002/ajmg.a.33528.
[82]
Sull JW, Liang KY, Hetmanski JB, et al. Evidence that TGFA influences risk to cleft lip with/without cleft palate through unconventional genetic mechanisms[J]. Hum Genet2009126(3):385-394. DOI:10.1007/s00439-009-0680-3.
[83]
Haaland ØA, Romanowska J, Gjerdevik M, et al. A genome-wide scan of cleft lip triads identifies parent-of-origin interaction effects between ANK3 and maternal smoking,and between ARHGEF10 and alcohol consumption[J]. F1000Res20198:960. DOI:10.12688/f1000research.19571.2.
[84]
Shull LC, Artinger KB. Epigenetic regulation of craniofacial development and disease[J]. Birth Defects Res2024116(1):e2271. DOI:10.1002/bdr2.2271.
[1] 徐霞, 胡佳民, 黄丽萍, 承龙, 张书流, 赵炜炜, 顾盼盼, 曹铖. 老年重症患者早期肠内营养喂养不耐受现况及风险预测列线图的构建与验证[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(01): 11-17.
[2] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[3] 翟羽翔, 陈仁吉. 语音治疗对非综合征型唇腭裂言语障碍患者大脑神经网络影响的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(06): 418-423.
[4] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[5] 关雪, 于颖, 李京, 刘莹, 崔亚娟, 刘名鹤. 肝移植受者术后下肢深静脉血栓形成风险预测模型的建立[J/OL]. 中华移植杂志(电子版), 2025, 19(03): 138-144.
[6] 陆婷, 陈浩, 王雪静, 谭若芸, 彭宇竹. 肾移植术后一年发生代谢综合征的危险因素分析[J/OL]. 中华移植杂志(电子版), 2024, 18(02): 98-103.
[7] 刘欣, 刘雪萍, 焦玉丁, 任茂玲, 何永琴. 慢性阻塞性肺疾病并发呼吸衰竭风险预测模型的Meta 分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 110-114.
[8] 王石林, 叶继章, 丘向艳, 陈桂青, 邹晓敏. 慢性阻塞性肺疾病真菌感染风险早期预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 773-776.
[9] 孟泓宇, 戴锦辉, 胡嘉金, 李光辉. 炎性细胞因子与胰腺导管腺癌的因果关系:一项孟德尔随机化研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 948-955.
[10] 王柯云, 孙雅佳, 李甜, 张钰哲, 郑颖, 张伟光, 王倩, 董哲毅. 糖尿病肾脏疾病早期发生风险预测模型的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 218-225.
[11] 王霞, 粱育磊, 沈杰, 袁杰, 吴颖鹏, 张丽丽, 陈相娣. 重型颅脑损伤术后脑膨出的风险预测模型构建[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(06): 359-366.
[12] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[13] 席静妮, 李娜, 张琪. 中性粒细胞与淋巴细胞比值对老年重症社区获得性肺炎进展为脓毒症的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 28-31.
[14] 曹娟, 朱亚, 吴玉泉, 胡旭钢, 董芳, 洪逸莲, 桂莹. 改良Morse跌倒评估量表对老年住院患者跌倒风险的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 1-4.
[15] 李兴研, 郜业发. 乳腺癌保乳术后放疗致急性放射性皮炎风险预测模型构建及验证[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 165-169.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?