| [1] |
Li WY, Chen ZY, Xu WL, et al. Temporal trends in the prevalence of major birth defects in China:A nationwide population-based study from 2007 to 2021[J]. World J Pediatr, 2024, 20(11):1145-1154. DOI: 10.1007/s12519-024-00844-9.
|
| [2] |
Malic CC, Lam M, Donelle J, et al. The burden of psychiatric disorders associated with orofacial cleft pathology among children in Ontario,Canada[J]. J Plast Reconstr Aesthet Surg, 2023, 84:422-431. DOI: 10.1016/j.bjps.2023.06.019.
|
| [3] |
McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits:Consensus,uncertainty and challenges[J]. Nat Rev Genet, 2008, 9(5):356-369. DOI: 10.1038/nrg2344.
|
| [4] |
Nasreddine G, El Hajj J, Ghassibe-Sabbagh M. Orofacial clefts embryology,classification,epidemiology,and genetics[J]. Mutat Res Rev Mutat Res, 2021, 787:108373. DOI: 10.1016/j.mrrev.2021.108373.
|
| [5] |
Babai A, Irving M. Orofacial clefts:Genetics of cleft lip and palate[J]. Genes, 2023, 14(8):1603. DOI: 10.3390/genes14081603.
|
| [6] |
Marigorta UM, Rodríguez JA, Gibson G, et al. Replicability and prediction:Lessons and challenges from GWAS[J]. Trends Genet, 2018, 34(7):504-517. DOI: 10.1016/j.tig.2018.03.005.
|
| [7] |
Alade A, Awotoye W, Butali A. Genetic and epigenetic studies in non-syndromic oral clefts[J]. Oral Dis, 2022, 28(5):1339-1350. DOI: 10.1111/odi.14146.
|
| [8] |
Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases[J]. Nature, 2009, 461(7265):747-753. DOI: 10.1038/nature08494.
|
| [9] |
Thieme F, Henschel L, Hammond NL, et al. Extending the allelic spectrum at noncoding risk loci of orofacial clefting[J]. Hum Mutat, 2021, 42(8):1066-1078. DOI: 10.1002/humu.24219.
|
| [10] |
Igo RP Jr, Kinzy TG, Cooke Bailey JN. Genetic risk scores[J]. Curr Protoc Hum Genet, 2019, 104(1):e95. DOI: 10.1002/cphg.95.
|
| [11] |
Udler MS, McCarthy MI, Florez JC, et al. Genetic risk scores for diabetes diagnosis and precision medicine[J]. Endocr Rev, 2019, 40(6):1500-1520. DOI: 10.1210/er.2019-00088.
|
| [12] |
Gladding PA, Legget M, Fatkin D, et al. Polygenic risk scores in coronary artery disease and atrial fibrillation[J]. Heart Lung Circ, 2020, 29(4):634-640. DOI: 10.1016/j.hlc.2019.12.004.
|
| [13] |
Wang XY, Wang LL, Xu L, et al. Evaluation of polygenic risk score for risk prediction of gastric cancer[J]. World J Gastrointest Oncol, 2023, 15(2):276-285. DOI: 10.4251/wjgo.v15.i2.276.
|
| [14] |
Yanes T, Young MA, Meiser B, et al. Clinical applications of polygenic breast cancer risk:A critical review and perspectives of an emerging field[J]. Breast Cancer Res, 2020, 22(1):21. DOI: 10.1186/s13058-020-01260-3.
|
| [15] |
|
| [16] |
Rao S, Yao Y, Bauer DE. Editing GWAS:Experimental approaches to dissect and exploit disease-associated genetic variation[J]. Genome Med, 2021, 13(1):41. DOI: 10.1186/s13073-021-00857-3.
|
| [17] |
Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J]. Nat Genet, 2009, 41(4):473-477. DOI: 10.1038/ng.333.
|
| [18] |
Ma L, Lou S, Miao Z, et al. Identification of novel susceptibility loci for non-syndromic cleft lip with or without cleft palate[J]. J Cell Mol Med, 2020, 24(23):13669-13678. DOI: 10.1111/jcmm.15878.
|
| [19] |
Avasthi KK, Muthuswamy S, Asim A, et al. Identification of novel genomic variations in susceptibility to nonsyndromic cleft lip and palate patients[J]. Pediatr Rep, 2021, 13(4):650-657. DOI: 10.3390/pediatric13040077.
|
| [20] |
Machado RA, Ayroza Rangel ALC, de Almeida Reis SR, et al. Evaluation of genome-wide association signals for nonsyndromic cleft lip with or without cleft palate in a multiethnic Brazilian population[J]. Arch Oral Biol, 2022, 135:105372. DOI: 10.1016/j.archoralbio.2022.105372.
|
| [21] |
Adam Y, Sadeeq S, Kumuthini J, et al. Polygenic risk score in African populations:Progress and challenges[J]. F1000Res, 2022, 11:175. DOI: 10.12688/f1000research.76218.2.
|
| [22] |
|
| [23] |
Choi SW, O′Reilly PF. PRSice-2:Polygenic risk score software for biobank-scale data[J]. GigaScience, 2019, 8(7):giz082. DOI: 10.1093/gigascience/giz082.
|
| [24] |
International Schizophrenia Consortium, Purcell SM, Wray NR, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder[J]. Nature, 2009, 460(7256):748-752. DOI: 10.1038/nature08185.
|
| [25] |
Mavaddat N, Michailidou K, Dennis J, et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes[J]. Am J Hum Genet, 2019, 104(1):21-34. DOI: 10.1016/j.ajhg.2018.11.002.
|
| [26] |
Konuma T, Okada Y. Statistical genetics and polygenic risk score for precision medicine[J]. Inflamm Regen, 2021, 41(1):18. DOI: 10.1186/s41232-021-00172-9.
|
| [27] |
Waples RS. Practical application of the linkage disequilibrium method for estimating contemporary effective population size:A review[J]. Mol Ecol Res, 2024, 24(1):e13879. DOI: 10.1111/1755-0998.13879.
|
| [28] |
Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction[J]. Circulation, 2007, 115(7):928-935. DOI: 10.1161/CIRCULATIONAHA.106.672402.
|
| [29] |
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 1982, 143(1):29-36. DOI: 10.1148/radiology.143.1.7063747.
|
| [30] |
Song L, Liu A, Shi J, et al. SummaryAUC:A tool for evaluating the performance of polygenic risk prediction models in validation datasets with only summary level statistics[J]. Bioinformatics, 2019, 35(20):4038-4044. DOI: 10.1093/bioinformatics/btz176.
|
| [31] |
Patel AP, Wang M, Ruan Y, et al. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease[J]. Nat Med, 2023, 29(7):1793-1803. DOI: 10.1038/s41591-023-02429-x.
|
| [32] |
Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps[J]. Nat Genet, 2018, 50(11):1505-1513. DOI: 10.1038/s41588-018-0241-6.
|
| [33] |
Jin G, Lv J, Yang M, et al. Genetic risk,incident gastric cancer,and healthy lifestyle:A Meta-analysis of genome-wide association studies and prospective cohort study[J]. Lancet Oncol, 2020, 21(10):1378-1386. DOI: 10.1016/S1470-2045(20)30460-5.
|
| [34] |
Ward J, Graham N, Strawbridge RJ, et al. Polygenic risk scores for major depressive disorder and neuroticism as predictors of antidepressant response:Meta-analysis of three treatment cohorts[J]. PLoS ONE, 2018, 13(9):e0203896. DOI: 10.1371/journal.pone.0203896.
|
| [35] |
Li X, Ploner A, Wang Y, et al. Clinical biomarkers and associations with healthspan and lifespan:Evidence from observational and genetic data[J]. EBioMedicine, 2021, 66:103318. DOI: 10.1016/j.ebiom.2021.103318.
|
|
Fries N, Haworth S, Shaffer JR, et al. A polygenic score predicts caries experience in elderly swedish adults[J]. J Dent Res, 2024, 103(5):502-508. DOI: 10.1177/00220345241232330.
|
| [36] |
Ricci M, Garoia F, Tabarroni C, et al. Association between genetic risk score and periodontitis onset and progression:A pilot study[J]. Arch Oral Biol, 2011, 56(12):1499-1505. DOI: 10.1016/j.archoralbio.2011.07.002.
|
| [37] |
Li W, Wang X, Tian Y, et al. A novel multi-locus genetic risk score identifies patients with higher risk of generalized aggressive periodontitis[J]. J Periodontol, 2020, 91(7):925-932. DOI: 10.1002/JPER.19-0135.
|
| [39] |
Fugmann C, Reid S, Pucholt P, et al. A high polygenic risk score is associated with SSA/SSB antibody positivity and early onset in primary Sjögren′s disease[J]. Rheumatology (Oxford), 2024, 64(7):4341-4346. DOI: 10.1093/rheumatology/keae693.
|
| [40] |
Xu X, Wang B, Jiang Z, et al. Novel risk factors for craniofacial microsomia and assessment of their utility in clinic diagnosis[J]. Hum Mol Genet, 2021, 30(11):1045-1056. DOI: 10.1093/hmg/ddab055.
|
| [41] |
Chung CM, Hung CC, Lee CH, et al. Variants in FAT1 and COL9A1 genes in male population with or without substance use to assess the risk factors for oral malignancy[J]. PLoS One, 2019, 14(1):e0210901. DOI: 10.1371/journal.pone.0210901.
|
| [42] |
Howe LJ, Hemani G, Lesseur C, et al. Evaluating shared genetic influences on nonsyndromic cleft lip/palate and oropharyngeal neoplasms[J]. Methods Mol Biol, 2020, 44(8):924-933. DOI: 10.1002/gepi.22343.
|
| [43] |
Howe LJ, Lee MK, Sharp GC, et al. Investigating the shared genetics of non-syndromic cleft lip/palate and facial morphology[J]. PLoS Genet, 2018, 14(8):e1007501. DOI: 10.1371/journal.pgen.1007501.
|
| [44] |
Indencleef K, Hoskens H, Lee MK, et al. The intersection of the genetic architectures of orofacial clefts and normal facial variation[J]. Front Genet, 2021, 12:626403. DOI: 10.3389/fgene.2021.626403.
|
| [45] |
Weinberg SM, Maher BS, Marazita ML. Parental craniofacial morphology in cleft lip with or without cleft palate as determined by cephalometry:A Meta-analysis[J]. Orthod Craniofac Res, 2006, 9(1):18-30. DOI: 10.1111/j.1601-6343.2006.00339.x.
|
| [46] |
Wilson-Nagrani C, Richmond S, Paternoster L. Non-syndromic cleft lip and palate polymorphisms affect normal lip morphology[J]. Front Genet, 2018, 9:413. DOI: 10.3389/fgene.2018.00413.
|
| [47] |
Ludwig KU, Böhmer AC, Bowes J, et al. Imputation of orofacial clefting data identifies novel risk loci and sheds light on the genetic background of cleft lip ± cleft palate and cleft palate only[J]. Hum Mol Genet, 2017, 26(4):829-842. DOI: 10.1093/hmg/ddx012.
|
| [48] |
|
| [49] |
Ishorst N, Henschel L, Thieme F, et al. Identification of de novo variants in nonsyndromic cleft lip with/without cleft palate patients with low polygenic risk scores[J]. Mol Genet Genomic Med, 2023, 11(3):e2109. DOI: 10.1002/mgg3.2109.
|
| [50] |
Yu Y, Alvarado R, Petty LE, et al. Polygenic risk impacts PDGFRA mutation penetrance in non-syndromic cleft lip and palate[J]. Hum Mol Genet, 2022, 31(14):2348-2357. DOI: 10.1093/hmg/ddac037.
|
| [51] |
Blanco R, Colombo A, Suazo J. Genetic risk score for nonsyndromic cleft lip with or without cleft palate for a Chilean population[J]. Genet Couns, 2014, 25(2):143-149. DOI: 10.1155/2014/509821.
|
| [52] |
Kang G, Baek SH, Kim YH, et al. Genetic risk assessment of nonsyndromic cleft lip with or without cleft palate by linking genetic networks and deep learning models[J]. Int J Mol Sci, 2023, 24(5):4557. DOI: 10.3390/ijms24054557.
|
| [53] |
Wang S, Shi J, Liu C, et al. Evidence of the folate-mediated one-carbon metabolism pathway genes in controlling the non-syndromic oral clefts risks[J]. Oral Dis, 2023, 29(3):1080-1088. DOI: 10.1111/odi.14068.
|
| [54] |
郭煌达,王斯悦,侯天姣,等. 基于中国人群全基因组关联研究的非综合征型唇腭裂风险预测研究[C]. 中华口腔医学会口腔遗传病与罕见病专业委员会.中华口腔医学会口腔遗传病与罕见病专业委员会第6次学术年会论文汇编.温州, 2024:156. DOI: 10.26914/c.cnkihy.2024.066189.
|
| [55] |
Li R, Chen Y, Ritchie MD, et al. Electronic health records and polygenic risk scores for predicting disease risk[J]. Nat Rev Genet, 2020, 21(8):493-502. DOI: 10.1038/s41576-020-0224-1.
|
| [56] |
Wand H, Lambert SA, Tamburro C, et al. Improving reporting standards for polygenic scores in risk prediction studies[J]. Nat, 2021, 591(7849):211-219. DOI: 10.1038/s41586-021-03243-6.
|
| [57] |
Truong B, Hull LE, Ruan Y, et al. Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases[J]. Cell Genom, 2024, 4(4):100523. DOI: 10.1016/j.xgen.2024.100523.
|
| [58] |
|
| [59] |
Lim AJW, Tyniana CT, Lim LJ, et al. Robust SNP-based prediction of rheumatoid arthritis through machine-learning-optimized polygenic risk score[J]. J Transl Med, 2023, 21(1):92. DOI: 10.1186/s12967-023-03939-5.
|
| [60] |
Chung CW, Chou SC, Kao CM, et al. Application of machine learning algorithm for the prediction of lupus nephritis using SNP data,polygenic risk score,and electronic health record[J]. Health Informatics J, 2025, 31(3):14604582251363510. DOI: 10.1177/14604582251363510.
|
| [61] |
Peduzzi G, Felici A, Pellungrini R, et al. Explainable machine learning identifies a polygenic risk score as a key predictor of pancreatic cancer risk in the UK Biobank[J]. Dig Liver Dis, 2025, 57(4):915-922. DOI: 10.1016/j.dld.2024.11.010.
|
| [62] |
Lu X, Liu Z, Cui Q, et al. A polygenic risk score improves risk stratification of coronary artery disease:A large-scale prospective Chinese cohort study[J]. Eur Heart J, 2022, 43(18):1702-1711. DOI: 10.1093/eurheartj/ehac093.
|
| [63] |
Sandhu RK, Dron JS, Liu Y, et al. Polygenic risk score predicts sudden death in patients with coronary disease and preserved systolic function[J]. J Am Coll Cardiol, 2022, 80(9):873-883. DOI: 10.1016/j.jacc.2022.05.049.
|
| [64] |
Gu Y, Yan C, Wang T, et al. Construction and evaluation of the functional polygenic risk score for gastric cancer in a prospective cohort of the European population[J]. Chin Med J (Engl), 2023, 136(14):1671-1679. DOI: 10.1097/CM9.0000000000002716.
|
| [65] |
Ekoru K, Adeyemo AA, Chen G, et al. Genetic risk scores for cardiometabolic traits in sub-Saharan African populations[J]. Int J Epidemiol, 2021, 50(4):1283-1296. DOI: 10.1093/ije/dyab046.
|
| [66] |
Kelchtermans J, March ME, Mentch F, et al. Genetic modifiers of asthma response to air pollution in children:An African ancestry GWAS and PM 2.5 polygenic risk score study[J]. Environ Res, 2025, 267:120666. DOI: 10.1016/j.envres.2024.120666.
|
| [67] |
Zeiger JS, Beaty TH, Liang KY. Oral clefts,maternal smoking,and TGFA:A Meta-analysis of gene-environment interaction[J]. Cleft Palate Craniofac J, 2005, 42(1):58-63. DOI: 10.1597/02-128.1.
|
| [68] |
Romitti PA, Sun L, Honein MA, et al. Maternal periconceptional alcohol consumption and risk of orofacial clefts[J]. Am J Epidemiol, 2007, 166(7):775-785. DOI: 10.1093/aje/kwm146.
|
| [69] |
Yakoob MY, Bateman BT, Ho E, et al. The risk of congenital malformations associated with exposure to β-blockers early in pregnancy:A Meta-analysis[J]. Hypertension, 2013, 62(2):375-381. DOI: 10.1161/HYPERTENSIONAHA.111.00833.
|
| [70] |
Badovinac RL, Werler MM, Williams PL, et al. Folic acid-containing supplement consumption during pregnancy and risk for oral clefts:A Meta-analysis[J]. Birt Defects Res A Clin Mol Teratol, 2007, 79(1):8-15. DOI: 10.1002/bdra.20315.
|
| [71] |
|
| [72] |
Briggs SEW, Law P, East JE, et al. Integrating genome-wide polygenic risk scores and non-genetic risk to predict colorectal cancer diagnosis using UK Biobank data:Population based cohort study[J]. BMJ, 2022, 379:e071707. DOI: 10.1136/bmj-2022-071707.
|
| [73] |
Li L, Pang S, Starnecker F, et al. Integration of a polygenic score into guideline-recommended prediction of cardiovascular disease[J]. Eur Heart J, 2024, 45(20):1843-1852. DOI: 10.1093/eurheartj/ehae048.
|
| [74] |
Cheng X, Du F, Long X, et al. Genetic inheritance models of non-syndromic cleft lip with or without palate:From monogenic to polygenic[J]. Genes, 2023, 14(10):1859. DOI: 10.3390/genes14101859.
|
| [75] |
van Rooij IALM, Vermeij-Keers C, Kluijtmans LAJ, et al. Does the interaction between maternal folate intake and the methylenetetrahydrofolate reductase polymorphisms affect the risk of cleft lip with or without cleft palate?[J]. Am J Epidemiol, 2003, 157(7):583-591. DOI: 10.1093/aje/kwg005.
|
| [76] |
Mostowska A, Hozyasz KK, Jagodzinski PP. Maternal MTR genotype contributes to the risk of non-syndromic cleft lip and palate in the Polish population[J]. Clin Genet, 2006, 69(6):512-517. DOI: 10.1111/j.1399-0004.2006.00618.x.
|
| [77] |
Hozyasz KK, Mostowska A, Surowiec Z, et al. Genetic polymorphisms of GSTM1 and GSTT1 in mothers of children with isolated cleft lip with or without cleft palate[J]. Przegl Lek,2005,62(10):1019-1022.
|
| [78] |
Rubini M, Brusati R, Garattini G, et al. Cystathionine beta-synthase c.844ins68 gene variant and non-syndromic cleft lip and palate[J]. Am J Med Genet A, 2005, 136A(4):368-372. DOI: 10.1002/ajmg.a.30812.
|
| [79] |
Park BY, Sull JW, Park JY, et al. Differential parental transmission of markers in BCL3 among Korean cleft case-parent trios[J]. J Prev Med Public Health, 2009, 42(1):1-4. DOI: 10.3961/jpmph.2009.42.1.1.
|
| [80] |
Sull JW, Liang KY, Hetmanski JB, et al. Excess maternal transmission of markers in TCOF1 among cleft palate case-parent trios from three populations[J]. Am J Med Genet A, 2008, 146A(18):2327-2331. DOI: 10.1002/ajmg.a.32302.
|
| [81] |
Suazo J, Santos JL, Jara L, et al. Parent-of-origin effects for MSX1 in a Chilean population with nonsyndromic cleft lip/palate[J]. Am J Med Genet A, 2010, 152A(8):2011-2016. DOI: 10.1002/ajmg.a.33528.
|
| [82] |
Sull JW, Liang KY, Hetmanski JB, et al. Evidence that TGFA influences risk to cleft lip with/without cleft palate through unconventional genetic mechanisms[J]. Hum Genet, 2009, 126(3):385-394. DOI: 10.1007/s00439-009-0680-3.
|
| [83] |
Haaland ØA, Romanowska J, Gjerdevik M, et al. A genome-wide scan of cleft lip triads identifies parent-of-origin interaction effects between ANK3 and maternal smoking,and between ARHGEF10 and alcohol consumption[J]. F1000Res, 2019, 8:960. DOI: 10.12688/f1000research.19571.2.
|
| [84] |
Shull LC, Artinger KB. Epigenetic regulation of craniofacial development and disease[J]. Birth Defects Res, 2024, 116(1):e2271. DOI: 10.1002/bdr2.2271.
|