[1] |
|
[2] |
|
[3] |
Joda T, Gallucci GO. The virtual patient in dental medicine[J]. Clin Oral Implants Res, 2015, 26(6):725-726. DOI: 10.1111/clr.12379.
|
[4] |
Koch GK, Gallucci GO, Lee SJ. Accuracy in the digital workflow:From data acquisition to the digitally milled cast[J]. J Prosthet Dent, 2016, 115(6):749-754. DOI: 10.1016/j.prosdent.2015.12.004.
|
[5] |
Altarakemah Y, Akbar J, Akthar S,et al. Evaluation of a technique for reducing chairside occlusal adjustment of crowns[J]. J Prosthodont, 2021, 30(2):183-188. DOI: 10.1111/jopr.13252.
|
[6] |
Fiorin L, Moris ICM, Faria ACL,et al. Effect of different grinding protocols on surface characteristics and fatigue behavior of yttria-stabilized zirconia polycrystalline:An in vitro study[J]. J Prosthet Dent, 2020, 124(4):486.e1-486.e8. DOI: 10.1016/j.prosdent.2020.03.016.
|
[7] |
de Carvalho IHG, da Silva NR, Vila-Nova TEL,et al. Effect of finishing/polishing techniques and aging on topography, C. albicans adherence,and flexural strength of ultra-translucent zirconia:An in situ study[J]. Clin Oral Investig, 2022, 26(1):889-900. DOI: 10.1007/s00784-021-04068-3.
|
[8] |
Mohammadi-Bassir M, Babasafari M, Rezvani MB,et al. Effect of coarse grinding,overglazing,and 2 polishing systems on the flexural strength,surface roughness,and phase transformation of yttrium-stabilized tetragonal zirconia[J]. J Prosthet Dent, 2017, 118(5):658-665. DOI: 10.1016/j.prosdent.2016.12.019.
|
[9] |
Fonseca RG, Abi-Rached Fde O, da Silva FS,et al. Effect of surface and heat treatments on the biaxial flexural strength and phase transformation of a Y-TZP ceramic[J]. J Adhes Dent, 2014, 16(5):451-458. DOI: 10.3290/j.jad.a32663.
|
[10] |
Ye H, Wang KP, Liu Y,et al. Four-dimensional digital prediction of the esthetic outcome and digital implementation for rehabilitation in the esthetic zone[J]. J Prosthet Dent, 2020, 123(4):557-563. DOI: 10.1016/j.prosdent.2019.04.007.
|
[11] |
|
[12] |
Morikawa K, Isogai R, Nonaka J,et al. A new intraoral six-degrees-of-freedom jaw movement tracking method using magnetic fingerprints[J]. Sensors(Basel), 2022, 22(22):8923. DOI: 10.3390/s22228923.
|
[13] |
Feng Y, Zhan L, Sun X,et al. A fully digital workflow to register maxillomandibular relation using a jaw motion tracer for fixed prosthetic rehabilitation:A technical report[J]. J Esthet Restor Dent, 2023, 35(7):1068-1076. DOI: 10.1111/jerd.13058.
|
[14] |
Kwon JH, Im S, Chang M,et al. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner[J]. J Prosthodont Res, 2019, 63(1):115-119. DOI: 10.1016/j.jpor.2018.05.001.
|
[15] |
Rudd KD, Morrow RM, Jendresen MC. Fluorescent photoanthropometry:A method for analyzing mandibular motion[J]. J Prosthet Dent, 1969, 21(5):495-505. DOI: 10.1016/0022-3913(69)90070-5.
|
[16] |
Lundberg M, Wictorin L, Hedegård B. Masticatory function:A cineradiographic investigation.Ⅱ. Position of the bolus in full denture wearers[J]. Acta Odontol Scand, 1967, 25(4):383-395. DOI: 10.3109/00016356709043647.
|
[17] |
Sójka A, Huber J, Kaczmarek E,et al. Evaluation of mandibular movement functions using instrumental ultrasound system[J]. J Prosthodont, 2017, 26(2):123-128. DOI: 10.1111/jopr.12389.
|
[18] |
周言,米丛波.下颌运动轨迹的研究进展[J].现代口腔医学杂志,2022,36(4):259-263.
|
[19] |
Farook TH, Rashid F, Alam MK,et al. Variables influencing the device-dependent approaches in digitally analysing jaw movement:A systematic review[J]. Clin Oral Investig, 2023, 27(2):489-504. DOI: 10.1007/s00784-022-04835-w.
|
[20] |
Gu X, Hu T, Zhang Z,et al. Comparison of the accuracy of an ultrasonic-based jaw tracking device with conventional electronic tracking device[J]. J Adv Prosthodont, 2025, 17(1):47-58. DOI: 10.4047/jap.2025.17.1.47.
|