切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 185 -188. doi: 10.3877/cma.j.issn.1674-1366.2021.03.010

综述

深度学习在口腔颌面部影像诊断领域的研究进展
佘杨杨1, 陈洁玉1, 高峰2, 江静薇3, 张敏4, 葛雅平1,()   
  1. 1. 中山大学附属第六医院口腔科,广州 510655
    2. 中山大学附属第六医院结直肠外科,广州 510655
    3. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
    4. 同济大学附属口腔医院种植科,同济大学口腔医学院,上海牙组织修复与再生工程技术研究中心,上海 200072
  • 收稿日期:2020-08-23 出版日期:2021-06-01
  • 通信作者: 葛雅平

Deep learning: advance in the field of oral and maxillofacial diagnostic imaging

Yangyang She1, Jieyu Chen1, Feng Gao2, Jingwei Jiang3, Min Zhang4, Yaping Ge1,()   

  1. 1. Department of Stomatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
    2. Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
    3. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincal Key Laboratory of Stomatology, Guangzhou 510055, China
    4. Department of Oral Implantology, Hospital and School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
  • Received:2020-08-23 Published:2021-06-01
  • Corresponding author: Yaping Ge
  • Supported by:
    Special Fund of Fundamental Scientific Research Business Expense for Higher School of Central Government(Projects for Young Teachers, 2042019kf0111)
引用本文:

佘杨杨, 陈洁玉, 高峰, 江静薇, 张敏, 葛雅平. 深度学习在口腔颌面部影像诊断领域的研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 185-188.

Yangyang She, Jieyu Chen, Feng Gao, Jingwei Jiang, Min Zhang, Yaping Ge. Deep learning: advance in the field of oral and maxillofacial diagnostic imaging[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(03): 185-188.

以深度学习(deep learning)为代表的人工智能(AI)可用于解决现实生活中的问题,并已应用于社会的各个领域,AI在口腔颌面部的研究也非常出色。本文将综述有关深度学习应用于口腔颌面部影像诊断领域的研究进展。

Artificial intelligence (AI) , represented by deep learning, can be used for solving real-life problems and has been applied across all sectors of society. The AI research in the oral and maxillofacial field is also outstanding. In this article, recent advances about deep learning in the field of oral and maxillofacial diagnostic imaging have been reviewed.

[19]
Murata M,Ariji Y,Ohashi Y,et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography[J]. Oral Radiol,2019,35(3):301-307. DOI:10.1007/s11282-018-0363-7.
[20]
De Tobel J,Radesh P,Vandermeulen D,et al. An automated technique to stage lower third molar development on panoramic radiographs for age estimation:a pilot study[J]. J Forensic Odontostomatol,2017,35(2):42-54.
[21]
Yamaguchi S,Lee C,Karaer O,et al. Predicting the Debonding of CAD/CAM Composite Resin Crowns with AI[J]. J Dent Res,2019,98(11):1234-1238. DOI:10.1177/0022034519867641.
[22]
Yu HJ,Cho SR,Kim MJ,et al. Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence[J]. J Dent Res,2020,99(3):249-256. DOI:10.1177/0022034520901715.
[1]
Park WJ,Park JB. History and application of artificial neural networks in dentistry[J]. Eur J Dent,2018,12(4):594-601. DOI:10.4103/ejd.ejd_325_18.
[2]
Chan HP,Samala RK,Hadjiiski LM,et al. Deep Learning in Medical Image Analysis[J]. Adv Exp Med Biol,2020,1213:3-21. DOI:10.1007/978-3-030-33128-3_1.
[3]
Chen H,Zhang K,Lyu P,et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films[J]. Sci Rep,2019,9(1):3840. DOI:10.1038/s41598-019-40414-y.
[4]
Tuzoff DV,Tuzova LN,Bornstein MM,et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol,2019,48(4):20180051. DOI:10.1259/dmfr.20180051.
[5]
Lee JH,Han SS,Kim YH,et al. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs[J]. Oral Surg Oral Med Oral Pathol Oral Radiol,2020,129(6):635-642. DOI:10.1016/j.oooo.2019.11.007.
[6]
Hiraiwa T,Ariji Y,Fukuda M,et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography[J]. Dentomaxillofac Radiol,2019,48(3):20180218. DOI:10.1259/dmfr.20180218.
[7]
Schwendicke F,Elhennawy K,Paris S,et al. Deep learning for caries lesion detection in near-infrared light transillumination images:A pilot study[J]. J Dent,2020,92:103260. DOI:10.1016/j.jdent.2019.103260.
[8]
Casalegno F,Newton T,Daher R,et al. Caries Detection with Near-Infrared Transillumination Using Deep Learning[J]. J Dent Res,2019,98(11):1227-1233. DOI:10.1177/0022034519871884.
[9]
Ekert T,Krois J,Meinhold L,et al. Deep Learning for the Radiographic Detection of Apical Lesions[J]. J Endod,2019,45(7):917-922.e5. DOI:10.1016/j.joen.2019.03.016.
[10]
Orhan K,Bayrakdar IS,Ezhov M,et al. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans[J]. Int Endod J,2020,53(5):680-689. DOI:10.1111/iej.13265.
[11]
章一帆,连绮思,王亚奇,等.人工智能辅助区分根尖片模型网络的研究[C].中华口腔医学会老年口腔医学专业委员会. 2019年中华口腔医学会老年口腔医学专业委员会第十四次全国老年口腔医学学术年会论文汇编,济南,2019.北京:中华口腔医学会,2019:2. DOI:10.26914/c.cnkihy.2019.024441.
[12]
Fukuda M,Inamoto K,Shibata N,et al. Valuation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography[J]. Oral Radiol,2020,36(4):337-343. DOI:10.1007/s11282-019-00409-x.
[13]
Lee JH,Kim DH,Jeong SN,et al. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm[J]. J Periodontal Implant Sci,2018,48(2):114-123. DOI:10.5051/jpis.2018.48.2.114.
[14]
Krois J,Ekert T,Meinhold L,et al. Deep Learning for the Radiographic Detection of Periodontal Bone Loss[J]. Sci Rep,2019,9(1):8495. DOI:10.1038/s41598-019-44839-3.
[15]
游文喆,夏斌.牙菌斑智能判读系统建立的探索研究[C].中华口腔医学会儿童口腔医学专业委员会,中国国际科技交流中心. 2019年中华口腔医学会儿童口腔医学专业委员会儿童口腔医学技术进步与发展高端论坛论文汇编,重庆,2019.北京:中华口腔医学会,2019:1. DOI:10.26914/c.cnkihy.2019.025581.
[16]
Vinayahalingam S,Xi T,Bergé S,et al. Automated detection of third molars and mandibular nerve by deep learning[J]. Sci Rep,2019,9(1):9007. DOI:10.1038/s41598-019-45487-3.
[17]
Ariji Y,Yanashita Y,Kutsuna S,et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique[J]. Oral Surg Oral Med Oral Pathol Oral Radiol,2019,128(4):424-430. DOI:10.1016/j.oooo.2019.05.014.
[18]
Lee JH,Kim DH,Jeong SN. Diagnosis of cystic lesions using panoramic and CBCT images based on deep learning neural Network[J]. Oral Dis,2020,26(1):152-158. DOI:10.1111/odi.13223.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 邬文莉, 万约翰, 高梓君, 黎凡. 外科手术联合口服西罗莫司治疗儿童口腔颌面部淋巴管畸形[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 345-352.
[6] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[7] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[8] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[9] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[10] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[11] 邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.
[12] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[13] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[14] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要