切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 185 -188. doi: 10.3877/cma.j.issn.1674-1366.2021.03.010

综述

深度学习在口腔颌面部影像诊断领域的研究进展
佘杨杨1, 陈洁玉1, 高峰2, 江静薇3, 张敏4, 葛雅平1,()   
  1. 1. 中山大学附属第六医院口腔科,广州 510655
    2. 中山大学附属第六医院结直肠外科,广州 510655
    3. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
    4. 同济大学附属口腔医院种植科,同济大学口腔医学院,上海牙组织修复与再生工程技术研究中心,上海 200072
  • 收稿日期:2020-08-23 出版日期:2021-06-01
  • 通信作者: 葛雅平

Deep learning: advance in the field of oral and maxillofacial diagnostic imaging

Yangyang She1, Jieyu Chen1, Feng Gao2, Jingwei Jiang3, Min Zhang4, Yaping Ge1,()   

  1. 1. Department of Stomatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
    2. Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
    3. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincal Key Laboratory of Stomatology, Guangzhou 510055, China
    4. Department of Oral Implantology, Hospital and School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
  • Received:2020-08-23 Published:2021-06-01
  • Corresponding author: Yaping Ge
  • Supported by:
    Special Fund of Fundamental Scientific Research Business Expense for Higher School of Central Government(Projects for Young Teachers, 2042019kf0111)
引用本文:

佘杨杨, 陈洁玉, 高峰, 江静薇, 张敏, 葛雅平. 深度学习在口腔颌面部影像诊断领域的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 185-188.

Yangyang She, Jieyu Chen, Feng Gao, Jingwei Jiang, Min Zhang, Yaping Ge. Deep learning: advance in the field of oral and maxillofacial diagnostic imaging[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(03): 185-188.

以深度学习(deep learning)为代表的人工智能(AI)可用于解决现实生活中的问题,并已应用于社会的各个领域,AI在口腔颌面部的研究也非常出色。本文将综述有关深度学习应用于口腔颌面部影像诊断领域的研究进展。

Artificial intelligence (AI) , represented by deep learning, can be used for solving real-life problems and has been applied across all sectors of society. The AI research in the oral and maxillofacial field is also outstanding. In this article, recent advances about deep learning in the field of oral and maxillofacial diagnostic imaging have been reviewed.

[19]
Murata M,Ariji Y,Ohashi Y,et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography[J]. Oral Radiol,2019,35(3):301-307. DOI:10.1007/s11282-018-0363-7.
[20]
De Tobel J,Radesh P,Vandermeulen D,et al. An automated technique to stage lower third molar development on panoramic radiographs for age estimation:a pilot study[J]. J Forensic Odontostomatol,2017,35(2):42-54.
[21]
Yamaguchi S,Lee C,Karaer O,et al. Predicting the Debonding of CAD/CAM Composite Resin Crowns with AI[J]. J Dent Res,2019,98(11):1234-1238. DOI:10.1177/0022034519867641.
[22]
Yu HJ,Cho SR,Kim MJ,et al. Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence[J]. J Dent Res,2020,99(3):249-256. DOI:10.1177/0022034520901715.
[1]
Park WJ,Park JB. History and application of artificial neural networks in dentistry[J]. Eur J Dent,2018,12(4):594-601. DOI:10.4103/ejd.ejd_325_18.
[2]
Chan HP,Samala RK,Hadjiiski LM,et al. Deep Learning in Medical Image Analysis[J]. Adv Exp Med Biol,2020,1213:3-21. DOI:10.1007/978-3-030-33128-3_1.
[3]
Chen H,Zhang K,Lyu P,et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films[J]. Sci Rep,2019,9(1):3840. DOI:10.1038/s41598-019-40414-y.
[4]
Tuzoff DV,Tuzova LN,Bornstein MM,et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol,2019,48(4):20180051. DOI:10.1259/dmfr.20180051.
[5]
Lee JH,Han SS,Kim YH,et al. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs[J]. Oral Surg Oral Med Oral Pathol Oral Radiol,2020,129(6):635-642. DOI:10.1016/j.oooo.2019.11.007.
[6]
Hiraiwa T,Ariji Y,Fukuda M,et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography[J]. Dentomaxillofac Radiol,2019,48(3):20180218. DOI:10.1259/dmfr.20180218.
[7]
Schwendicke F,Elhennawy K,Paris S,et al. Deep learning for caries lesion detection in near-infrared light transillumination images:A pilot study[J]. J Dent,2020,92:103260. DOI:10.1016/j.jdent.2019.103260.
[8]
Casalegno F,Newton T,Daher R,et al. Caries Detection with Near-Infrared Transillumination Using Deep Learning[J]. J Dent Res,2019,98(11):1227-1233. DOI:10.1177/0022034519871884.
[9]
Ekert T,Krois J,Meinhold L,et al. Deep Learning for the Radiographic Detection of Apical Lesions[J]. J Endod,2019,45(7):917-922.e5. DOI:10.1016/j.joen.2019.03.016.
[10]
Orhan K,Bayrakdar IS,Ezhov M,et al. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans[J]. Int Endod J,2020,53(5):680-689. DOI:10.1111/iej.13265.
[11]
章一帆,连绮思,王亚奇,等.人工智能辅助区分根尖片模型网络的研究[C].中华口腔医学会老年口腔医学专业委员会. 2019年中华口腔医学会老年口腔医学专业委员会第十四次全国老年口腔医学学术年会论文汇编,济南,2019.北京:中华口腔医学会,2019:2. DOI:10.26914/c.cnkihy.2019.024441.
[12]
Fukuda M,Inamoto K,Shibata N,et al. Valuation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography[J]. Oral Radiol,2020,36(4):337-343. DOI:10.1007/s11282-019-00409-x.
[13]
Lee JH,Kim DH,Jeong SN,et al. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm[J]. J Periodontal Implant Sci,2018,48(2):114-123. DOI:10.5051/jpis.2018.48.2.114.
[14]
Krois J,Ekert T,Meinhold L,et al. Deep Learning for the Radiographic Detection of Periodontal Bone Loss[J]. Sci Rep,2019,9(1):8495. DOI:10.1038/s41598-019-44839-3.
[15]
游文喆,夏斌.牙菌斑智能判读系统建立的探索研究[C].中华口腔医学会儿童口腔医学专业委员会,中国国际科技交流中心. 2019年中华口腔医学会儿童口腔医学专业委员会儿童口腔医学技术进步与发展高端论坛论文汇编,重庆,2019.北京:中华口腔医学会,2019:1. DOI:10.26914/c.cnkihy.2019.025581.
[16]
Vinayahalingam S,Xi T,Bergé S,et al. Automated detection of third molars and mandibular nerve by deep learning[J]. Sci Rep,2019,9(1):9007. DOI:10.1038/s41598-019-45487-3.
[17]
Ariji Y,Yanashita Y,Kutsuna S,et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique[J]. Oral Surg Oral Med Oral Pathol Oral Radiol,2019,128(4):424-430. DOI:10.1016/j.oooo.2019.05.014.
[18]
Lee JH,Kim DH,Jeong SN. Diagnosis of cystic lesions using panoramic and CBCT images based on deep learning neural Network[J]. Oral Dis,2020,26(1):152-158. DOI:10.1111/odi.13223.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[5] 曹琮沅, 黄烁金, 何倩婷, 王安训. 平阳霉素复合剂治疗口腔颌面部脉管畸形的有效性和安全性[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 368-374.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 阮星星, 黄智渊, 刘芙香, 狄金明. 从临床医师诊治患者的思路出发撰写临床研究论文[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 397-401.
[12] 莫林键, 杨舒博, 农卫赟, 程继文. 人工智能虚拟数字医师在钬激光前列腺剜除日间手术患教管理中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 318-322.
[13] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[14] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要