切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 189 -192. doi: 10.3877/cma.j.issn.1674-1366.2021.03.011

综述

细胞焦亡在糖尿病牙周炎中的研究进展
蒲娇1, 龚忠诚1,()   
  1. 1. 新疆医科大学第一附属医院(附属口腔医院)颌面肿瘤外科,新疆维吾尔自治区口腔医学研究所,乌鲁木齐 830054
  • 收稿日期:2020-10-26 出版日期:2021-06-01
  • 通信作者: 龚忠诚

Research progress of pyroptosis in diabetic periodontitis

Jiao Pu1, Zhongcheng Gong1,()   

  1. 1. Oncological Department of Oral & Maxillofacial Surgery, the First Affiliated Hospital of Xinjiang (Affiliated Stomatological Hospital) , Uygur Autonomous Region Institute of Stomatology, Urumqi 830054, China
  • Received:2020-10-26 Published:2021-06-01
  • Corresponding author: Zhongcheng Gong
  • Supported by:
    National Natural Science Foundation of China(81760191)
引用本文:

蒲娇, 龚忠诚. 细胞焦亡在糖尿病牙周炎中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 189-192.

Jiao Pu, Zhongcheng Gong. Research progress of pyroptosis in diabetic periodontitis[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(03): 189-192.

细胞焦亡作为细胞程序性死亡之一,自2001年被命名至今,一直在诸多疾病领域中被探索与研究。细胞焦亡的发生主要依赖于caspase-1/4/5/11对消皮素D(GSDMD)的裂解并介导诸如白细胞介素18(IL-18)和IL-1β等非活性细胞因子和其他细胞内容物的释放。目前,越来越多的证据表明,细胞焦亡在引发牙周病的间接和直接作用。但是,细胞焦亡在牙周病的发生、发展中的研究仍然有限,还需要进一步深入研究。本文主要对针对近年来细胞焦亡在糖尿病牙周炎中扮演的角色及具体的分子机制进行归纳和总结。

Pyroptosis, as one of the programmed cell death, has been explored and studied in many diseases since it was named in 2001. The occurrence of it depends on Gasdermin D (GSDMD) cleavage by caspase-1/4/5/11 and mediates the release of inactive cytokines such as IL-18, IL-1β and other intracellular content. At present, the growing evidence from various studies showed that the indirect and direct role of pyroptosis in periodontitis. However, the research on the occurrence and development of pyroptosis in periodontitis is still limited. Therefore, the further research is needed. This article mainly summarizes the role of pyroptosis in diabetic periodontitis and the specific molecular mechanisms in recent years.

[1]
Zychlinsky A,Prevost MC,Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature,1992,358(6382):167-169. DOI:10.1038/358167a0.
[2]
Cookson BT,Brennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol,2001,9(3):113-114. DOI:10.1016/s0966-842x(00)01936-3.
[3]
Bergsbaken T,Fink SL,Cookson BT. Pyroptosis:host cell death and inflammation[J]. Nat Rev Microbiol,2009,7(2):99-109. DOI:10.1038/nrmicro2070.
[4]
Rojas J,Bermudez V,Palmar J,et al. Pancreatic Beta Cell Death:Novel Potential Mechanisms in Diabetes Therapy[J]. J Diabetes Res,2018,2018:9601801. DOI:10.1155/2018/9601801.
[5]
Gong W,Shi Y,Ren J. Research progresses of molecular mechanism of pyroptosis and its related diseases[J]. Immunobiology,2020,225(2):151884. DOI:10.1016/j.imbio.2019.11.019.
[6]
Jorgensen I,Rayamajhi M,Miao EA. Programmed cell death as a defence against infection[J]. Nat Rev Immunol,2017,17(3):151-164. DOI:10.1038/nri.2016.147.
[7]
Gao YL,Zhai JH,Chai YF. Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis[J]. Mediators Inflamm,2018,2018:5823823. DOI:10.1155/2018/5823823.
[8]
Löe H. Periodontal disease. The sixth complication of diabetes mellitus[J]. Diabetes Care,1993,16(1):329-334. DOI:10.2337/diacare.16.1.329.
[9]
Taylor GW. Bidirectional interrelationships between diabetes and periodontal diseases:an epidemiologic perspective[J]. Ann Periodontol,2001,6(1):99-112. DOI:10.1902/annals.2001.6.1.99.
[10]
Xu X,Lai Y,Hua ZC. Apoptosis and apoptotic body:disease message and therapeutic target potentials[J]. Biosci Rep,2019,39(1):BSR20180992. DOI:10.1042/BSR20180992.
[11]
de Vasconcelos NM,Van Opdenbosch N,Van Gorp H,et al. An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages[J]. Cell Rep,2020,32(4):107959. DOI:10.1016/j.celrep.2020.107959.
[12]
Swanson KV,Deng M,Ting JP. The NLRP3 inflammasome:molecular activation and regulation to therapeutics[J]. Nat Rev Immunol,2019,19(8):477-489. DOI:10.1038/s41577-019-0165-0.
[13]
Zhaolin Z,Guohua L,Shiyuan W,et al. Role of pyroptosis in cardiovascular disease[J]. Cell Prolif,2019,52(2):e12563. DOI:10.1111/cpr.12563.
[14]
Chen X,He WT,Hu L,et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis[J]. Cell Res,2016,26(9):1007-1020. DOI:10.1038/cr.2016.100.
[15]
von Mässenhausen A,Tonnus W,Himmerkus N,et al. Phenytoin inhibits necroptosis[J]. Cell Death Dis,2018,9(3):359. DOI:10.1038/s41419-018-0394-3.
[16]
Gong Y,Fan Z,Luo G,et al. The role of necroptosis in cancer biology and therapy[J]. Mol Cancer,2019,18(1):100. DOI:10.1186/s12943-019-1029-8.
[17]
Jiang M,Qi L,Li L,et al. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer[J]. Cell Death Discov,2020,6:112. DOI:10.1038/s41420-020-00349-0.
[18]
Hachim MY,Khalil BA,Elemam NM,et al. Pyroptosis:The missing puzzle among innate and adaptive immunity crosstalk[J]. J Leukoc Biol,2020,108(1):323-338. DOI:10.1002/JLB.3MIR0120-625R.
[19]
Ball DP,Taabazuing CY,Griswold AR,et al. Caspase-1 interdomain linker cleavage is required for pyroptosis[J]. Life Sci Alliance,2020,3(3):e202000664. DOI:10.26508/lsa.202000664.
[20]
Broz P,Pelegrín P,Shao F. The gasdermins,a protein family executing cell death and inflammation[J]. Nat Rev Immunol,2020,20(3):143-157. DOI:10.1038/s41577-019-0228-2.
[21]
Shi J,Gao W,Shao F. Pyroptosis:Gasdermin-Mediated Programmed Necrotic Cell Death[J]. Trends Biochem Sci,2017,42(4):245-254. DOI:10.1016/j.tibs.2016.10.004.
[22]
Aglietti RA,Dueber EC. Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions[J]. Trends Immunol,2017,38(4):261-271. DOI:10.1016/j.it.2017.01.003.
[23]
Lu F,Lan Z,Xin Z,et al. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases[J]. J Cell Physiol,2020,235(4):3207-3221. DOI:10.1002/jcp.29268.
[24]
He WT,Wan H,Hu L,et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res,2015,25(12):1285-1298. DOI:10.1038/cr.2015.139.
[25]
Man SM,Karki R,Kanneganti TD. Molecular mechanisms and functions of pyroptosis,inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev,2017,277(1):61-75. DOI:10.1111/imr.12534.
[26]
Mitra S,Sarkar A. Microparticulate P2X7 and GSDM-D mediated regulation of functional IL-1β release[J]. Purinergic Signal,2019,15(1):119-123. DOI:10.1007/s11302-018-9640-5.
[27]
Ding J,Wang K,Liu W,et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature,2016,535(7610):111-116. DOI:10.1038/nature18590.
[28]
Julien O,Wells JA. Caspases and their substrates[J]. Cell Death Differ,2017,24(8):1380-1389. DOI:10.1038/cdd.2017.44.
[29]
Wang Y,Yin B,Li D,et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer[J]. Biochem Biophys Res Commun,2018,495(1):1418-1425. DOI:10.1016/j.bbrc.2017.11.156.
[30]
Sarhan J,Liu BC,Muendlein HI,et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. Proc Natl Acad Sci USA,2018,115(46):E10888-E10897. DOI:10.1073/pnas.1809548115.
[31]
Orning P,Weng D,Starheim K,et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death[J]. Science,2018,362(6418):1064-1069. DOI:10.1126/science.aau2818.
[32]
Narasimhulu CA,Singla DK. Amelioration of diabetes-induced inflammation mediated pyroptosis,sarcopenia,and adverse muscle remodelling by bone morphogenetic protein-7[J]. J Cachexia Sarcopenia Muscle,2021. DOI:10.1002/jcsm.12662.
[33]
Luo B,Li B,Wang W,et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One,2014,9(8):e104771. DOI:10.1371/journal.pone.0104771.
[34]
Yang F,Qin Y,Wang Y,et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy[J]. Int J Biol Sci,2019,15(5):1010-1019. DOI:10.7150/ijbs.29680.
[35]
Wu A,Sun W,Mou F. lncRNAMALAT1 promotes high glucoseinduced H9C2 cardiomyocyte pyroptosis by downregulating miR1413p expression[J]. Mol Med Rep,2021,23(4):1-8. DOI:10.3892/mmr.2021.11898.
[36]
An X,Zhang Y,Cao Y,et al. Punicalagin Protects Diabetic Nephropathy by Inhibiting Pyroptosis Based on TXNIP/NLRP3 Pathway[J]. Nutrients,2020,12(5):1516-1527. DOI:10.3390/nu12051516.
[37]
Gan J,Huang M,Lan G,et al. High Glucose Induces the Loss of Retinal Pericytes Partly via NLRP3-Caspase-1-GSDMD-Mediated Pyroptosis[J]. Biomed Res Int,2020,2020:4510628. DOI:10.1155/2020/4510628.
[38]
Li J,Guo Y,Chen YY,et al. miR-124-3p increases in high glucose induced osteocyte-derived exosomes and regulates galectin-3 expression:A possible mechanism in bone remodeling alteration in diabetic periodontitis[J]. FASEB J,2020,34(11):14234-14249. DOI:10.1096/fj.202000970RR.
[39]
Cheng R,Wu Z,Li M,et al. Interleukin-1β is a potential therapeutic target for periodontitis:a narrative review[J]. Int J Oral Sci,2020,12(1):2. DOI:10.1038/s41368-019-0068-8.
[40]
Liu W,Liu J,Wang W,et al. NLRP6 Induces Pyroptosis by Activation of Caspase-1 in Gingival Fibroblasts[J]. J Dent Res,2018,97(12):1391-1398. DOI:10.1177/0022034518775036.
[41]
Li C,Yin W,Yu N,et al. miR-155 promotes macrophage pyroptosis induced by Porphyromonas gingivalis through regulating the NLRP3 inflammasome[J]. Oral Dis,2019,25(8):2030-2039. DOI:10.1111/odi.13198.
[42]
Cheng R,Liu W,Zhang R,et al. Porphyromonas gingivalis-derived lipopolysaccharide combines hypoxia to induce Caspase-1 activation in periodontitis[J]. Front Cell Infect Microbiol,2017,7:474. DOI:10.3389/fcimb.2017.00474.
[43]
Fleetwood AJ,Lee MKS,Singleton W,et al. Metabolic Remodeling,Inflammasome Activation,and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles[J]. Front Cell Infect Microbiol,2017,7:351. DOI:10.3389/fcimb.2017.00351.
[44]
Zhou X,Wang Q,Nie L,et al. Metformin ameliorates the NLPP3 inflammasome mediated pyroptosis by inhibiting the expression of NEK7 in diabetic periodontitis[J]. Arch Oral Biol,2020,116:104763. DOI:10.1016/j.archoralbio.2020.104763.
[45]
Schmid-Burgk JL,Chauhan D,Schmidt T,et al. A Genome-wide CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation[J]. J Biol Chem,2016,291(1):103-109. DOI:10.1074/jbc.C115.700492.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[8] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[11] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要