切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 189 -192. doi: 10.3877/cma.j.issn.1674-1366.2021.03.011

综述

细胞焦亡在糖尿病牙周炎中的研究进展
蒲娇1, 龚忠诚1,()   
  1. 1. 新疆医科大学第一附属医院(附属口腔医院)颌面肿瘤外科,新疆维吾尔自治区口腔医学研究所,乌鲁木齐 830054
  • 收稿日期:2020-10-26 出版日期:2021-06-01
  • 通信作者: 龚忠诚

Research progress of pyroptosis in diabetic periodontitis

Jiao Pu1, Zhongcheng Gong1,()   

  1. 1. Oncological Department of Oral & Maxillofacial Surgery, the First Affiliated Hospital of Xinjiang (Affiliated Stomatological Hospital) , Uygur Autonomous Region Institute of Stomatology, Urumqi 830054, China
  • Received:2020-10-26 Published:2021-06-01
  • Corresponding author: Zhongcheng Gong
  • Supported by:
    National Natural Science Foundation of China(81760191)
引用本文:

蒲娇, 龚忠诚. 细胞焦亡在糖尿病牙周炎中的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 189-192.

Jiao Pu, Zhongcheng Gong. Research progress of pyroptosis in diabetic periodontitis[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(03): 189-192.

细胞焦亡作为细胞程序性死亡之一,自2001年被命名至今,一直在诸多疾病领域中被探索与研究。细胞焦亡的发生主要依赖于caspase-1/4/5/11对消皮素D(GSDMD)的裂解并介导诸如白细胞介素18(IL-18)和IL-1β等非活性细胞因子和其他细胞内容物的释放。目前,越来越多的证据表明,细胞焦亡在引发牙周病的间接和直接作用。但是,细胞焦亡在牙周病的发生、发展中的研究仍然有限,还需要进一步深入研究。本文主要对针对近年来细胞焦亡在糖尿病牙周炎中扮演的角色及具体的分子机制进行归纳和总结。

Pyroptosis, as one of the programmed cell death, has been explored and studied in many diseases since it was named in 2001. The occurrence of it depends on Gasdermin D (GSDMD) cleavage by caspase-1/4/5/11 and mediates the release of inactive cytokines such as IL-18, IL-1β and other intracellular content. At present, the growing evidence from various studies showed that the indirect and direct role of pyroptosis in periodontitis. However, the research on the occurrence and development of pyroptosis in periodontitis is still limited. Therefore, the further research is needed. This article mainly summarizes the role of pyroptosis in diabetic periodontitis and the specific molecular mechanisms in recent years.

[1]
Zychlinsky A,Prevost MC,Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature,1992,358(6382):167-169. DOI:10.1038/358167a0.
[2]
Cookson BT,Brennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol,2001,9(3):113-114. DOI:10.1016/s0966-842x(00)01936-3.
[3]
Bergsbaken T,Fink SL,Cookson BT. Pyroptosis:host cell death and inflammation[J]. Nat Rev Microbiol,2009,7(2):99-109. DOI:10.1038/nrmicro2070.
[4]
Rojas J,Bermudez V,Palmar J,et al. Pancreatic Beta Cell Death:Novel Potential Mechanisms in Diabetes Therapy[J]. J Diabetes Res,2018,2018:9601801. DOI:10.1155/2018/9601801.
[5]
Gong W,Shi Y,Ren J. Research progresses of molecular mechanism of pyroptosis and its related diseases[J]. Immunobiology,2020,225(2):151884. DOI:10.1016/j.imbio.2019.11.019.
[6]
Jorgensen I,Rayamajhi M,Miao EA. Programmed cell death as a defence against infection[J]. Nat Rev Immunol,2017,17(3):151-164. DOI:10.1038/nri.2016.147.
[7]
Gao YL,Zhai JH,Chai YF. Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis[J]. Mediators Inflamm,2018,2018:5823823. DOI:10.1155/2018/5823823.
[8]
Löe H. Periodontal disease. The sixth complication of diabetes mellitus[J]. Diabetes Care,1993,16(1):329-334. DOI:10.2337/diacare.16.1.329.
[9]
Taylor GW. Bidirectional interrelationships between diabetes and periodontal diseases:an epidemiologic perspective[J]. Ann Periodontol,2001,6(1):99-112. DOI:10.1902/annals.2001.6.1.99.
[10]
Xu X,Lai Y,Hua ZC. Apoptosis and apoptotic body:disease message and therapeutic target potentials[J]. Biosci Rep,2019,39(1):BSR20180992. DOI:10.1042/BSR20180992.
[11]
de Vasconcelos NM,Van Opdenbosch N,Van Gorp H,et al. An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages[J]. Cell Rep,2020,32(4):107959. DOI:10.1016/j.celrep.2020.107959.
[12]
Swanson KV,Deng M,Ting JP. The NLRP3 inflammasome:molecular activation and regulation to therapeutics[J]. Nat Rev Immunol,2019,19(8):477-489. DOI:10.1038/s41577-019-0165-0.
[13]
Zhaolin Z,Guohua L,Shiyuan W,et al. Role of pyroptosis in cardiovascular disease[J]. Cell Prolif,2019,52(2):e12563. DOI:10.1111/cpr.12563.
[14]
Chen X,He WT,Hu L,et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis[J]. Cell Res,2016,26(9):1007-1020. DOI:10.1038/cr.2016.100.
[15]
von Mässenhausen A,Tonnus W,Himmerkus N,et al. Phenytoin inhibits necroptosis[J]. Cell Death Dis,2018,9(3):359. DOI:10.1038/s41419-018-0394-3.
[16]
Gong Y,Fan Z,Luo G,et al. The role of necroptosis in cancer biology and therapy[J]. Mol Cancer,2019,18(1):100. DOI:10.1186/s12943-019-1029-8.
[17]
Jiang M,Qi L,Li L,et al. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer[J]. Cell Death Discov,2020,6:112. DOI:10.1038/s41420-020-00349-0.
[18]
Hachim MY,Khalil BA,Elemam NM,et al. Pyroptosis:The missing puzzle among innate and adaptive immunity crosstalk[J]. J Leukoc Biol,2020,108(1):323-338. DOI:10.1002/JLB.3MIR0120-625R.
[19]
Ball DP,Taabazuing CY,Griswold AR,et al. Caspase-1 interdomain linker cleavage is required for pyroptosis[J]. Life Sci Alliance,2020,3(3):e202000664. DOI:10.26508/lsa.202000664.
[20]
Broz P,Pelegrín P,Shao F. The gasdermins,a protein family executing cell death and inflammation[J]. Nat Rev Immunol,2020,20(3):143-157. DOI:10.1038/s41577-019-0228-2.
[21]
Shi J,Gao W,Shao F. Pyroptosis:Gasdermin-Mediated Programmed Necrotic Cell Death[J]. Trends Biochem Sci,2017,42(4):245-254. DOI:10.1016/j.tibs.2016.10.004.
[22]
Aglietti RA,Dueber EC. Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions[J]. Trends Immunol,2017,38(4):261-271. DOI:10.1016/j.it.2017.01.003.
[23]
Lu F,Lan Z,Xin Z,et al. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases[J]. J Cell Physiol,2020,235(4):3207-3221. DOI:10.1002/jcp.29268.
[24]
He WT,Wan H,Hu L,et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res,2015,25(12):1285-1298. DOI:10.1038/cr.2015.139.
[25]
Man SM,Karki R,Kanneganti TD. Molecular mechanisms and functions of pyroptosis,inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev,2017,277(1):61-75. DOI:10.1111/imr.12534.
[26]
Mitra S,Sarkar A. Microparticulate P2X7 and GSDM-D mediated regulation of functional IL-1β release[J]. Purinergic Signal,2019,15(1):119-123. DOI:10.1007/s11302-018-9640-5.
[27]
Ding J,Wang K,Liu W,et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature,2016,535(7610):111-116. DOI:10.1038/nature18590.
[28]
Julien O,Wells JA. Caspases and their substrates[J]. Cell Death Differ,2017,24(8):1380-1389. DOI:10.1038/cdd.2017.44.
[29]
Wang Y,Yin B,Li D,et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer[J]. Biochem Biophys Res Commun,2018,495(1):1418-1425. DOI:10.1016/j.bbrc.2017.11.156.
[30]
Sarhan J,Liu BC,Muendlein HI,et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. Proc Natl Acad Sci USA,2018,115(46):E10888-E10897. DOI:10.1073/pnas.1809548115.
[31]
Orning P,Weng D,Starheim K,et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death[J]. Science,2018,362(6418):1064-1069. DOI:10.1126/science.aau2818.
[32]
Narasimhulu CA,Singla DK. Amelioration of diabetes-induced inflammation mediated pyroptosis,sarcopenia,and adverse muscle remodelling by bone morphogenetic protein-7[J]. J Cachexia Sarcopenia Muscle,2021. DOI:10.1002/jcsm.12662.
[33]
Luo B,Li B,Wang W,et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One,2014,9(8):e104771. DOI:10.1371/journal.pone.0104771.
[34]
Yang F,Qin Y,Wang Y,et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy[J]. Int J Biol Sci,2019,15(5):1010-1019. DOI:10.7150/ijbs.29680.
[35]
Wu A,Sun W,Mou F. lncRNAMALAT1 promotes high glucoseinduced H9C2 cardiomyocyte pyroptosis by downregulating miR1413p expression[J]. Mol Med Rep,2021,23(4):1-8. DOI:10.3892/mmr.2021.11898.
[36]
An X,Zhang Y,Cao Y,et al. Punicalagin Protects Diabetic Nephropathy by Inhibiting Pyroptosis Based on TXNIP/NLRP3 Pathway[J]. Nutrients,2020,12(5):1516-1527. DOI:10.3390/nu12051516.
[37]
Gan J,Huang M,Lan G,et al. High Glucose Induces the Loss of Retinal Pericytes Partly via NLRP3-Caspase-1-GSDMD-Mediated Pyroptosis[J]. Biomed Res Int,2020,2020:4510628. DOI:10.1155/2020/4510628.
[38]
Li J,Guo Y,Chen YY,et al. miR-124-3p increases in high glucose induced osteocyte-derived exosomes and regulates galectin-3 expression:A possible mechanism in bone remodeling alteration in diabetic periodontitis[J]. FASEB J,2020,34(11):14234-14249. DOI:10.1096/fj.202000970RR.
[39]
Cheng R,Wu Z,Li M,et al. Interleukin-1β is a potential therapeutic target for periodontitis:a narrative review[J]. Int J Oral Sci,2020,12(1):2. DOI:10.1038/s41368-019-0068-8.
[40]
Liu W,Liu J,Wang W,et al. NLRP6 Induces Pyroptosis by Activation of Caspase-1 in Gingival Fibroblasts[J]. J Dent Res,2018,97(12):1391-1398. DOI:10.1177/0022034518775036.
[41]
Li C,Yin W,Yu N,et al. miR-155 promotes macrophage pyroptosis induced by Porphyromonas gingivalis through regulating the NLRP3 inflammasome[J]. Oral Dis,2019,25(8):2030-2039. DOI:10.1111/odi.13198.
[42]
Cheng R,Liu W,Zhang R,et al. Porphyromonas gingivalis-derived lipopolysaccharide combines hypoxia to induce Caspase-1 activation in periodontitis[J]. Front Cell Infect Microbiol,2017,7:474. DOI:10.3389/fcimb.2017.00474.
[43]
Fleetwood AJ,Lee MKS,Singleton W,et al. Metabolic Remodeling,Inflammasome Activation,and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles[J]. Front Cell Infect Microbiol,2017,7:351. DOI:10.3389/fcimb.2017.00351.
[44]
Zhou X,Wang Q,Nie L,et al. Metformin ameliorates the NLPP3 inflammasome mediated pyroptosis by inhibiting the expression of NEK7 in diabetic periodontitis[J]. Arch Oral Biol,2020,116:104763. DOI:10.1016/j.archoralbio.2020.104763.
[45]
Schmid-Burgk JL,Chauhan D,Schmidt T,et al. A Genome-wide CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation[J]. J Biol Chem,2016,291(1):103-109. DOI:10.1074/jbc.C115.700492.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[3] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[4] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[5] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[6] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[7] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[8] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[11] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
[14] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[15] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?