切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2020, Vol. 14 ›› Issue (04) : 207 -213. doi: 10.3877/cma.j.issn.1674-1366.2020.04.002

所属专题: 口腔医学 文献

中青年专家笔谈

破骨细胞融合蛋白的研究进展
骆鋆攀1, 卢嘉蕊1, 权晶晶1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2020-02-27 出版日期:2020-08-01
  • 通信作者: 权晶晶

Research advances of fusion proteins in osteoclasts

Junpan Luo1, Jiarui Lu1, Jingjing Quan1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincal Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2020-02-27 Published:2020-08-01
  • Corresponding author: Jingjing Quan
  • About author:
    Corresponding author: Quan Jingjing, Email:
  • Supported by:
    National Natural Science Foundation of China(81500839)
引用本文:

骆鋆攀, 卢嘉蕊, 权晶晶. 破骨细胞融合蛋白的研究进展[J]. 中华口腔医学研究杂志(电子版), 2020, 14(04): 207-213.

Junpan Luo, Jiarui Lu, Jingjing Quan. Research advances of fusion proteins in osteoclasts[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2020, 14(04): 207-213.

破骨细胞是具有骨吸收能力的多核巨细胞。在破骨细胞分化过程中,细胞因子刺激破骨细胞前体细胞表达融合蛋白,如树突状细胞特异性跨膜蛋白(DC-STAMP)、破骨细胞多次跨膜蛋白(OC-STAMP),为破骨细胞融合奠定基础。在疾病状态下,细胞因子的分泌异常,导致破骨细胞融合蛋白表达增加。这促进破骨细胞前体细胞融合形成骨吸收能力更强的破骨细胞。破骨细胞融合蛋白的异常表达是破骨细胞造成病理性骨破坏的前提。阐明破骨细胞融合蛋白的作用机制,对于干预骨破坏性疾病具有一定意义。基于此,本文通过论述破骨细胞融合蛋白的研究现状,为进一步研究破骨细胞造成的骨破坏性疾病提供参考。

Osteoclasts are multinucleated giant cells with bone resorption capacity. During osteoclast differentiation, cytokines stimulate the expression of fusion proteins on cell surface of osteoclast precursors, such as dendritic cell-specific transmembrane protein (DC-STAMP) , osteoclast-stimulatory transmembrane protein (OC-STAMP) , etc., which lay foundation for osteoclast fusion. Under pathological conditions, abnormal secretion of cytokines leads to increased expression of osteoclast fusion proteins, which promotes the fusion of osteoclast precursors to form osteoclasts with stronger bone resorption capacity. Aberrant expression of osteoclast fusion proteins is a prerequisite for pathological bone destruction caused by osteoclasts. Elucidation of the mechanisms underlying the roles of fusion proteins in osteoclasts is of great significance for the intervention of bone destructive diseases. In this article, we expound the research status of osteoclast fusion proteins to provide references for the further study of osteoclast-related bone destructive diseases.

图1 破骨细胞前体细胞分化及融合过程(1)单核-巨噬细胞在巨噬细胞集落刺激因子(M-CSF)、核因子κB受体激活子配体(RANKL)刺激下增殖、分化成破骨细胞前体细胞,同时表达破骨细胞融合蛋白。(2)破骨细胞融合早期,单核及少量核破骨细胞前体细胞以"宽接触面"的形式发生融合。破骨细胞前体细胞的融合起始于细胞膜的极化突起以及伪足。E-钙粘蛋白、破骨细胞多次跨膜蛋白(OC-STAMP)、白细胞分化抗原9(CD9)、CD47及其受体信号调节蛋白α等在破骨细胞前体细胞融合早期表达。E-钙粘蛋白主要分布于细胞膜突起以及板状伪足;通过形成同型二聚体,促进破骨细胞前体细胞的接触与融合。CD47表达于破骨细胞前体细胞融合接触面,通过结合受体信号调节蛋白α,促进破骨细胞前体细胞的接触;随着破骨细胞的融合,细胞膜表面CD47减少。RANKL刺激后,CD9位于细胞膜表面的微结构域脂筏上,同时分布于前体细胞的细胞突起。OC-STAMP、囊泡型ATP酶V0结构域d2亚单位(ATP6v0d2)在破骨细胞融合早期表达,OC-STAMP随着破骨细胞前体细胞融合减少,两者具体作用形式有待研究。(3)破骨细胞融合晚期,多核破骨细胞前体主要以"吞噬杯"的形式发生融合。在多核破骨细胞前体细胞融合接触面,树突状细胞特异性跨膜蛋白(DC-STAMP)与其未知配体结合、合胞素1(Syn-1)与受体谷氨酰胺转运载体(ASCT2)结合,促进其膜接触及融合。(4)破骨细胞前体细胞相互融合后,进一步分化成为具有功能的破骨细胞,表达组织蛋白酶K、耐酒石酸酸性磷酸酶等破骨细胞标记物
[1]
Levaot N,Ottolenghi A,Mann M,et al. Osteoclast fusion is initiated by a small subset of RANKL-stimulated monocyte progenitors,which can fuse to RANKL-unstimulated progenitors[J]. Bone,2015,79:21-28. DOI:10.1016/j.bone.2015.05.021.
[2]
Chiu YH,Ritchlin CT. DC-STAMP:A Key Regulator in Osteoclast Differentiation[J]. J Cell Physiol,2016,231(11):2402-2407. DOI:10.1002/jcp.25389.
[3]
Miyamoto H,Suzuki T,Miyauchi Y,et al. Osteoclast stimulatory transmembrane protein and dendritic cell-specific transmembrane protein cooperatively modulate cell-cell fusion to form osteoclasts and foreign body giant cells[J]. J Bone Miner Res,2012,27(6):1289-1297. DOI:10.1002/jbmr.1575.
[4]
Lee SH,Rho J,Jeong D,et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation[J]. Nat Med,2006,12(12):1403-1409. DOI:10.1038/nm1514.
[5]
Lundberg P,Koskinen C,Baldock PA,et al. Osteoclast formation is strongly reduced both in vivo and in vitro in the absence of CD47/SIRPα-interaction[J]. Biochem Biophy Res Commun,2007,352(2):444-448. DOI:10.1016/j.bbrc.2006.11.057.
[6]
Fiorino C,Harrison RE. E-cadherin is important for cell differentiation during osteoclastogenesis[J]. Bone,2016,86:106-118. DOI:10.1016/j.bone.2016.03.004.
[7]
Nakamura H,Nakashima T,Hayashi M,et al. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell-cell fusion[J]. Biochem Biophys Res Commun,2014,455(3-4):305-311. DOI:10.1016/j.bbrc.2014.11.009.
[8]
Lee JH,Hsieh CF,Liu HW,et al. Lipid raft-associated stomatin enhances cell fusion[J]. FASEB J,2017,31(1):47-59. DOI:10.1096/fj.201600643R.
[9]
Liao HJ,Tsai HF,Wu CS,et al. TRAIL inhibits RANK signaling and suppresses osteoclast activation via inhibiting lipid raft assembly and TRAF6 recruitment[J]. Cell Death Dis,2019,10(2):77. DOI:10.1038/s41419-019-1353-3.
[10]
Takahashi A,Kukita A,Li YJ,et al. Tunneling nanotube formation is essential for the regulation of osteoclastogenesis[J]. J Cell Biochem,2013,114(6):1238-1247. DOI:10.1002/jcb.24433.
[11]
Dupont M,Souriant S,Lugo-Villarino G,et al. Tunneling Nanotubes:Intimate Communication between Myeloid Cells[J]. Front Immunol,2018,9:43. DOI:10.3389/fimmu.2018.00043.
[12]
Pennanen P,Alanne MH,Fazeli E,et al. Diversity of actin architecture in human osteoclasts:network of curved and branched actin supporting cell shape and intercellular micrometer-level tubes[J]. Mol Cell Biochem,2017,432(1):131-139. DOI:10.1007/s11010-017-3004-2.
[13]
Takito J,Nakamura M. Precursors linked via the zipper-like structure or the filopodium duringthe secondary fusion of osteoclasts[J]. Commun Integr Biol,2012,5(5):453-457. DOI:10.4161/cib.20980.
[14]
Takito J,Otsuka H,Inoue S,et al. Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion[J]. Biol Open,2017,6(7):1104-1114. DOI:10.1242/bio.025460.
[15]
Wang D,Gu J,Feng L,et al. 1-α,25-dihydroxyvitamin D3 potentiates avian osteoclast activation by increasing the formation of zipper-like structure via Src/Rac1 signaling[J]. Biochem Biophys Res Commun,2018,501(2):576-583. DOI:10.1016/j.bbrc.2018.05.048.
[16]
Fu J,Li S,Feng R,et al. Multiple myeloma-derived MMP-13 mediates osteoclast fusogenesis and osteolytic disease[J]. J Clin Invest,2016,126(5):1759-1772. DOI:10.1172/JCI80276.
[17]
Arioka M,Takahashi-Yanaga F,Tatsumoto N,et al. Inorganic phosphate-induced impairment of osteoclast cell-cell fusion by the inhibition of AP-1-mediated DC-STAMP expression[J]. Biochem Biophys Res Commun,2017,493(1):9-13. DOI:10.1016/j.bbrc.2017.09.096.
[18]
Islam R,Bae HS,Yoon WJ,et al. Pin1 regulates osteoclast fusion through suppression of the master regulator of cell fusion DC-STAMP[J]. J Cell Physiol,2014,229(12):2166-2174. DOI:10.1002/jcp.24679.
[19]
Islam R,Yoon WJ,Ryoo HM. Pin1,the Master Orchestrator of Bone Cell Differentiation[J]. J Cell Physiol,2017,232(9):2339-2347. DOI:10.1002/jcp.25442.
[20]
Kanemoto S,Kobayashi Y,Yamashita T,et al. Luman is involved in osteoclastogenesis through the regulation of DC-STAMP expression,stability and localization[J]. J Cell Sci,2015,128(23):4353-4365. DOI:10.1242/jcs.176057.
[21]
Zeng Z,Zhang C,Chen J. Lentivirus-mediated RNA interference of DC-STAMP expression inhibits the fusion and resorptive activity of human osteoclasts[J]. J Bone Miner Metab,2013,31(4):409-416. DOI:10.1007/s00774-013-0434-0.
[22]
Wisitrasameewong W,Kajiya M,Movila A,et al. DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption[J]. J Dent Res,2017,96(6):685-693. DOI:10.1177/0022034517690490.
[23]
Iwasaki R,Ninomiya K,Miyamoto K,et al. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity[J]. Biochem Biophy Res Commun,2008,377(3):899-904. DOI:10.1016/j.bbrc.2008.10.076.
[24]
Mensah KA,Ritchlin CT,Schwarz EM. RANKL induces heterogeneous DC-STAMP(lo)and DC-STAMP(hi)osteoclast precursors of which the DC-STAMP(lo)precursors are the master fusogens[J]. J Cell Physiol,2010,223(1):76-83. DOI:10.1002/jcp.22012.
[25]
Søe K,Hobolt-Pedersen AS,Delaisse JM. The elementary fusion modalities of osteoclasts[J]. Bone,2015,73:181-189. DOI:10.1016/j.bone.2014.12.010.
[26]
Chiu YH,Schwarz E,Li D,et al. Dendritic Cell-Specific Transmembrane Protein(DC-STAMP)Regulates Osteoclast Differentiation via the Ca2+/NFATc1 Axis[J]. J Cell Physiol,2017,232(9):2538-2549. DOI:10.1002/jcp.25638.
[27]
Møller AM,Delaissé JM,Søe K. Osteoclast Fusion:Time-Lapse Reveals Involvement of CD47 and Syncytin-1 at Different Stages of Nuclearity[J]. J Cell Physiol,2017,232(6):1396-1403. DOI:10.1002/jcp.25633.
[28]
Verma SK,Leikina E,Melikov K,et al. Cell-surface phosphatidylserine regulates osteoclast precursor fusion[J]. J Biol Chem,2018,293(1):254-270. DOI:10.1074/jbc.M117.809681.
[29]
Belibasakis GN,Emingil G,Saygan B,et al. Gene expression of transcription factor NFATc1 in periodontal diseases[J]. APMIS,2011,119(3):167-172. DOI:10.1111/j.1600-0463.2010.02706.x.
[30]
Laurier E,Amiable N,Gagnon E,et al. Effect of a rare genetic variant of TM7SF4 gene on osteoclasts of patients with Paget′s disease of bone[J]. BMC Med Genet,2017,18(1):133. DOI:10.1186/s12881-017-0495-3.
[31]
Sultana MA,Pavlos NJ,Ward L,et al. Targeted sequencing of DCSTAMP in familial Paget′s disease of bone[J]. Bone Rep,2019,10:100198. DOI:10.1016/j.bonr.2019.100198.
[32]
Gross C,Weber M,Creutzburg K,et al. Osteoclast profile of medication-related osteonecrosis of the jaw secondary tobisphosphonate therapy:a comparison with osteoradionecrosis and osteomyelitis[J]. J Transl Med,2017,15(1):128. DOI:10.1186/s12967-017-1230-8.
[33]
Witwicka H,Hwang SY,Reyes-Gutierrez P,et al. Studies of OC-STAMP in Osteoclast Fusion:A New Knockout Mouse Model,Rescue of Cell Fusion,and Transmembrane Topology[J]. PLoS ONE,2015,10(6):e0128275. DOI:10.1371/journal.pone.0128275.
[34]
Yang M,Birnbaum MJ,MacKay CA,et al. Osteoclast stimulatory transmembrane protein(OC-STAMP),a novel protein induced by RANKL that promotes osteoclast differentiation[J]. J Cell Physiol,2008,215(2):497-505. DOI:10.1002/jcp.21331.
[35]
Kim MH,Park M,Baek SH,et al. Molecules and signaling pathways involved in the expression of OC-STAMP during osteoclastogenesis[J]. Amino Acids,2011,40(5):1447-1459. DOI:10.1007/s00726-010-0755-4.
[36]
Yuan H,He J,Zhang G,et al. Osteoclast stimulatory transmembrane protein induces a phenotypic switch in macrophage polarization suppressing an M1 pro-inflammatory state[J]. Acta Biochim Biophys Sin(Shanghai),2017,49(10):935-944. DOI:10.1093/abbs/gmx092.
[37]
Hwang YS,Ma GT,Park KK,et al. Lysophosphatidic acid stimulates osteoclast fusion through OC-STAMP and P2X7 receptor signaling[J]. J Bone Miner Metab,2014,32(2):110-122. DOI:10.1007/s00774-013-0470-9.
[38]
Ishii T,Ruiz-Torruella M,Ikeda A,et al. OC-STAMP promotes osteoclast fusion for pathogenic bone resorption in periodontitis via up-regulation of permissive fusogen CD9[J]. FASEB J,2018,32(7):4016-4030. DOI:10.1096/fj.201701424R.
[39]
Mazhab-Jafari MT,Rohou A,Schmidt C,et al. Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase[J]. Nature,2016,539(7627):118-122. DOI:10.1038/nature19828.
[40]
Kim K,Lee SH,Ha Kim J,et al. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein(DC-STAMP)[J]. Mol Endocrinol,2008,22(1):176-185. DOI:10.1210/me.2007-0237.
[41]
Zhao X,Ning L,Xie Z,et al. The Novel p38 Inhibitor,Pamapimod,Inhibits Osteoclastogenesis and Counteracts Estrogen-Dependent Bone Loss in Mice[J]. J Bone Miner Res,2019,34(5):911-922. DOI:10.1002/jbmr.3655.
[42]
Gong R,Peng X,Kang S,et al. Structural characterization of the fusion core in syncytin,envelope protein of human endogenous retrovirus family W[J]. Biochem Biophys Res Commun,2005,331(4):1193-1200. DOI:10.1016/j.bbrc.2005.04.032.
[43]
Søe K,Andersen TL,Hobolt-Pedersen AS,et al. Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion[J]. Bone,2011,48(4):837-846. DOI:10.1016/j.bone.2010.11.011.
[44]
Mbalaviele G,Chen H,Boyce BF,et al. The role of cadherin in the generation of multinucleated osteoclasts from mononuclear precursors in murine marrow[J]. J Clin Invest,1995,95(6):2757-2765. DOI:10.1172/JCI117979.
[45]
Sun Q,Liu C,Bai X,et al. Cell-substrate traction force regulates the fusion of osteoclast precursors through cell-cell interaction[J]. Biomech Model Mechanobiol,2020,19(2):481-492. DOI:10.1007/s10237-019-01223-4.
[46]
Quan J,Du Q,Hou Y,et al. Utilization of E-cadherin by monocytes from tumour cells plays key roles in the progression of bone invasion by oral squamous cell carcinoma[J]. Oncol Rep,2017,38(2):850-858. DOI:10.3892/or.2017.5749.
[47]
Takeda Y,Tachibana I,Miyado K,et al. Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes[J]. J Cell Biol,2003,161(5):945-956. DOI:10.1083/jcb.200212031.
[48]
Reyes R,Monjas A,Yánez-Mó M,et al. Different states of integrin LFA-1 aggregation are controlled through its association with tetraspanin CD9[J]. Biochim Biophys Acta,2015,1853(10 Pt A):2464-2480. DOI:10.1016/j.bbamcr.2015.05.018.
[49]
Ishii M,Iwai K,Koike M,et al. RANKL-induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis[J]. J Bone Miner Res,2006,21(6):965-976. DOI:10.1359/jbmr.060308.
[50]
Yi T,Kim HJ,Cho JY,et al. Tetraspanin CD9 regulates osteoclastogenesis via regulation of p44/42 MAPK activity[J]. Biochem Biophys Res Commun,2006,347(1):178-184. DOI:10.1016/j.bbrc.2006.06.061.
[51]
Iwai K,Ishii M,Ohshima S,et al. Abundant expression of tetraspanin CD9 in activated osteoclasts in ovariectomy-induced osteoporosis and in bone erosions of collagen-induced arthritis[J]. Rheumatol Int,2008,28(3):225-231. DOI:10.1007/s00296-007-0424-4.
[52]
Shi Y,Zhou W,Cheng L,et al. Tetraspanin CD9 stabilizes gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote STAT3 activation in glioma stem cells[J]. Cell Death Differ,2017,24(1):167-180. DOI:10.1038/cdd.2016.110.
[53]
Hu J,Li X,Chen Y,et al. The protective effect of WKYMVm peptide on inflammatory osteolysis through regulating NF-κB and CD9/gp130/STAT3 signalling pathway[J]. J Cell Mol Med,2020,24(2):1893-1905. DOI:10.1111/jcmm.14885.
[54]
Monteagudo S,Cornelis FMF,Aznar-Lopez C,et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis[J]. Nat Commun,2017,8:15889. DOI:10.1038/ncomms15889.
[55]
Gao Y,Ge W. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis[J]. Cell Death Dis,2018,9(2):33. DOI:10.1038/s41419-017-0040-5.
[56]
Hobolt-Pedersen AS,Delaissé JM,Søe K. Osteoclast fusion is based on heterogeneity between fusion partners[J]. Calcif Tissue Int,2014,95(1):73-82. DOI:10.1007/s00223-014-9864-5.
[57]
Søe K,Andersen TL,Hinge M,et al. Coordination of Fusion and Trafficking of Pre-osteoclasts at the Marrow-Bone Interface[J]. Calcif Tissue Int,2019,105(4):430-445. DOI:10.1007/s00223-019-00575-4.
[58]
Koduru SV,Sun B,Walker JM,et al. The contribution of cross-talk between the cell-surface proteins CD36 and CD47-TSP-1 in osteoclast formation and function[J]. J Biol Chem,2018,293(39):15055-15069. DOI:10.1074/jbc.RA117.000633.
[59]
Ishii M,Saeki Y. Osteoclast cell fusion:mechanisms and molecules[J]. Mod Rheumatol,2008,18(3):220-227. DOI:10.1007/s10165-008-0051-2.
[60]
Sunagawa M,Mii S,Enomoto A,et al. Suppression of skin tumorigenesis in CD109-deficient mice[J]. Oncotarget,2016,7(50):82836-82850. DOI:10.18632/oncotarget.12653.
[61]
Zhang JM,Murakumo Y,Hagiwara S,et al. CD109 attenuates TGF-β1 signaling and enhances EGF signaling in SK-MG-1 human glioblastoma cells[J]. Biochem Biophys Res Commun,2015,459(2):252-258. DOI:10.1016/j.bbrc.2015.02.093.
[62]
Wang Y,Inger M,Jiang H,et al. CD109 plays a role in osteoclastogenesis[J]. PLoS ONE,2013,8(4):e61213. DOI:10.1371/journal.pone.0061213.
[63]
Mii S,Hoshino A,Enomoto A,et al. CD109 deficiency induces osteopenia with an osteoporosis-like phenotype in vivo[J]. Genes Cells,2018,23(7):590-598. DOI:10.1111/gtc.12593.
[64]
Fennen M,Pap T,Dankbar B. Smad-dependent mechanisms of inflammatory bone destruction[J]. Arthritis Res Ther,2016,18(1):279. DOI:10.1186/s13075-016-1187-7.
[65]
Cui W,Cuartas E,Ke J,et al. CD200 and its receptor,CD200R,modulate bone mass via the differentiation of osteoclasts[J]. Proc Natl Acad Sci U S A,2007,104(36):14436-14441. DOI:10.1073/pnas.0702811104.
[66]
Varin A,Pontikoglou C,Labat E,et al. CD200R/CD200 inhibits osteoclastogenesis:new mechanism of osteoclast control by mesenchymal stem cells in human[J]. PloS One,2013,8(8):e72831. DOI:10.1371/journal.pone.0072831.
[67]
Guo Y,Yuan Y,Wu L,et al. BMP-IHH-mediated interplay between mesenchymal stem cells and osteoclasts supports calvarial bone homeostasis and repair[J]. Bone Res,2018,6(1):30. DOI:10.1038/s41413-018-0031-x.
[68]
Choi SJ,Han JH,Roodman GD. ADAM8:a novel osteoclast stimulating factor[J]. J Bone Miner Res,2001,16(5):814-822. DOI:10.1359/jbmr.2001.16.5.814.
[69]
Namba K,Nishio M,Mori K,et al. Involvement of ADAM9 in multinucleated giant cell formation of blood monocytes[J]. Cell Immunol,2001,213(2):104-113. DOI:10.1006/cimm.2001.1873.
[70]
Elavarasu S,Suthanthiran T,Thangavelu A,et al. Comparative analysis of gingival crevicular fluid a disintegrin and metalloproteinase 8 levels in health and periodontal disease:A clinic-biochemical study[J]. J Pharm Bioallied Sci,2015,7(Suppl2):S470-S473. DOI:10.4103/0975-7406.163507.
[71]
Iwai K,Ishii M,Ohshima S,et al. Expression and function of transmembrane-4 superfamily(tetraspanin)proteins in osteoclasts:reciprocal roles of tspan-5 and NET-6 during osteoclastogenesis[J]. Allergol Int,2007,56(4):457-463. DOI:10.2332/allergolint.O-07-488.
[72]
Pata M,Vacher J. Ostm1 Bifunctional Roles in Osteoclast Maturation:Insights From a Mouse Model Mimicking a Human OSTM1 Mutation[J]. J Bone Miner Res,2018,33(5):888-898. DOI:10.1002/jbmr.3378.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 凡军, 曹丽萍. 体外研究橙皮苷抑制钛颗粒介导的破骨细胞分化[J]. 中华关节外科杂志(电子版), 2020, 14(06): 698-702.
[3] 刘鹏, 邓亚鹏, 曹国定, 高余, 封国超, 刘军, 甄平. 人工关节置换术后假体无菌性松动的研究进展[J]. 中华关节外科杂志(电子版), 2020, 14(03): 346-351.
[4] 葛于伟, 朱振安, 毛远青. 成骨与破骨细胞促红细胞生成素肝细胞受体B4/肝配蛋白B2双向信号通路[J]. 中华关节外科杂志(电子版), 2018, 12(03): 401-404.
[5] 欧阳家耀, 曾春, 赵畅, 蔡道章, 方航. 骨膜蛋白及其在骨关节炎方面的研究进展[J]. 中华关节外科杂志(电子版), 2018, 12(02): 245-250.
[6] 林伟斌, 朱聪, 洪海森, 黄国锋, 高明明, 吴进, 沙漠, 林灿斌, 陈娜娜, 张晓旭, 丁真奇. 体外周期性压应力对兔胫骨骨折愈合过程成骨与破骨细胞增殖分化能力的影响[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 289-300.
[7] 冯洒然, 李德志, 林殿杰, 朱玲. 金黄色葡萄球菌和纤维连接蛋白结合蛋白A对血管内皮细胞紧密连接的破坏作用[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 411-417.
[8] 侯志飞, 赵学森. 干扰素诱导跨膜蛋白抗病毒机制研究进展[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(03): 212-215.
[9] 侯志飞, 蒋栋, 赵学森, 曾辉. 诱导表达人IFITM3的293细胞株的建立及其对H1N1型流感病毒侵染作用[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(02): 198-203.
[10] 郑慧敏, 夏贤友, 刘梦, 姚晓雨, 隋磊. 整联蛋白在骨重建中的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 124-128.
[11] 徐惠霞, 王薇, 袁理, 何飞, 朱丽红, 吴勇. 牙龈沟液中骨膜蛋白含量与牙周炎的关系[J]. 中华口腔医学研究杂志(电子版), 2019, 13(06): 343-348.
[12] 单臻, 李雯, 范远键, 林泽飞, 林颖, 王深明. miR-223通过IGF-1R及NFIA调控乳腺癌细胞及破骨细胞功能的研究[J]. 中华普通外科学文献(电子版), 2020, 14(06): 406-410.
[13] 王继荣, 暴一众, 唐颖, 吕晓玲, 杨舟鑫. 吴茱萸碱抑制破骨细胞分化延缓骨丢失的研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 86-92.
[14] 郑婉珊, 殷茵, 涂兆伟, 曹彬. 选择适用于研究滋养层细胞合体化过程的内参基因的实验研究[J]. 中华产科急救电子杂志, 2022, 11(01): 46-52.
[15] 詹晓勇, 朱庆义. 肿瘤干细胞的研究进展[J]. 中华临床实验室管理电子杂志, 2018, 06(02): 74-79.
阅读次数
全文


摘要