切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2020, Vol. 14 ›› Issue (04) : 201 -206. doi: 10.3877/cma.j.issn.1674-1366.2020.04.001

所属专题: 口腔医学 文献

专家论坛

m6A RNA甲基化修饰参与干细胞多向分化调控的研究进展
张旭1, 秦文1, 刘佳1, 金作林1,()   
  1. 1. 军事口腔医学国家重点实验室,国家口腔疾病临床医学研究中心,陕西省口腔疾病临床医学研究中心,第四军医大学口腔医院正畸科,西安 710032
  • 收稿日期:2020-02-25 出版日期:2020-08-01
  • 通信作者: 金作林

Research progress of m6A RNA methylation modification involved in the regulation of stem cell multidirectional differentiation

Xu Zhang1, Wen Qin1, Jia Liu1, Zuolin Jin1,()   

  1. 1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
  • Received:2020-02-25 Published:2020-08-01
  • Corresponding author: Zuolin Jin
  • About author:
    Corresponding author: Jin Zuolin, Email:
  • Supported by:
    National Natural Science Foundation of China(81701002)
引用本文:

张旭, 秦文, 刘佳, 金作林. m6A RNA甲基化修饰参与干细胞多向分化调控的研究进展[J]. 中华口腔医学研究杂志(电子版), 2020, 14(04): 201-206.

Xu Zhang, Wen Qin, Jia Liu, Zuolin Jin. Research progress of m6A RNA methylation modification involved in the regulation of stem cell multidirectional differentiation[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2020, 14(04): 201-206.

m6A修饰是RNA中普遍存在的甲基化修饰方式之一,属于转录后水平的表观遗传调控。m6A RNA甲基化修饰包括编写、擦除和读取过程,通过参与干细胞多向分化,从而影响多种生物学功能。近年来研究发现,无论在生理或者病理状态下,m6A修饰均可以通过调控干细胞的自我更新和分化,从而改变干细胞的复制能力和分化方向,进而影响组织成熟过程和疾病的发生与进展。本文对m6A在RNA中的修饰机制进行阐述,重点对m6A修饰参与几种干细胞的自我更新和多向分化调控展开论述。

m6A modification is one of the most pervasive methylation modifications in RNA, which belongs to the epigenetic regulation at the post-transcriptional level. m6A RNA methylation modification includes the process of writing, erasing and reading, which affects a variety of biological functions by participating in the multidirectional differentiation of stem cells. In recent years, it has been found that whether in physiological or pathological state, m6A modification can change the replication ability and differentiation direction of stem cells by regulating the self-renewal and differentiation of stem cells, and subsequently affect the process of tissue maturation and disease progression. This article described the modification mechanism of m6A in RNA, and focused on the role of m6A modification in the regulation of self-renewal and multidirectional differentiation of several kinds of stem cells.

图1 m6A mRNA修饰的编写、擦除与读取过程[11]
[1]
Sui X,Hu Y,Ren C,et al. METTL3-mediated m6A is required for murine oocyte maturation and maternal-to-zygotic transition[J]. Cell Cycle,2020,19(4):391-404. DOI:10.1080/15384101.2019.1711324.
[2]
Zuo X,Chen Z,Gao W,et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. J Hematol Oncol,2020,13(1):5. DOI:10.1186/s13045-019-0839-x.
[3]
Peng W,Li J,Chen R,et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway[J]. J Exp Clin Cancer Res,2019,38(1):393. DOI:10.1186/s13046-019-1408-4.
[4]
Ren W,Lu J,Huang M,et al. Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA[J]. Nat Commun,2019,10(1):5042. DOI:10.1038/s41467-019-12923-x.
[5]
Chen L,Wang P,Bahal R,et al. Ontogenic mRNA expression of RNA modification writers,erasers,and readers in mouse liver[J]. PLoS ONE,2019,14(12):e0227102. DOI:10.1371/journal.pone.0227102.
[6]
Dominissini D,Moshitch-Moshkovitz S,Schwartz S,et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature,2012,485(7397):201-206. DOI:10.1038/nature11112.
[7]
Meyer KD,Saletore Y,Zumbo P,et al. Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′UTRs and near Stop Codons[J]. Cell,2012,149(7):1635-1646. DOI:10.1016/j.cell.2012.05.003.
[8]
Liao CH,Wang YH,Chang WW,et al. Leucine-Rich Repeat Neuronal Protein 1 Regulates Differentiation of Embryonic Stem Cells by Post-Translational Modifications of Pluripotency Factors[J]. Stem Cells,2018,36(10):1514-1524. DOI:10.1002/stem.2862.
[9]
Yao Y,Bi Z,Wu R,et al. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2-dependent manner[J]. FASEB J,2019,33(6):7529-7544. DOI:10.1096/fj.201802644R.
[10]
Wu Y,Xie L,Wang M,et al. Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis[J]. Nat Commun,2018,9(1):4772. DOI:10.1038/s41467-018-06898-4.
[11]
Zaccara S,Ries RJ,Jaffrey SR. Reading,writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol,2019,20(10):608-624. DOI:10.1038/s41580-019-0168-5.
[12]
Liu J,Yue Y,Han D,et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol,2014,10(2):93-95. DOI:10.1038/nchembio.1432.
[13]
Wang P,Doxtader KA,Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases[J]. Mol Cell,2016,63(2):306-317. DOI:10.1016/j.molcel.2016.05.041.
[14]
Li Y,Wu K,Quan W,et al. The dynamics of FTO binding and demethylation from the m6A motifs[J]. RNA Biol,2019,16(9):1179-1189. DOI:10.1080/15476286.2019.1621120.
[15]
Wang X,Feng J,Xue Y,et al. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex[J]. Nature,2016,534(7608):575-578. DOI:10.1038/nature18298.
[16]
Schöller E,Weichmann F,Treiber T,et al. Interactions,localization,and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex[J]. RNA,2018,24(4):499-512. DOI:10.1261/rna.064063.117.
[17]
Yue Y,Liu J,Cui X,et al. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation[J]. Cell Discov,2018,4(1):10. DOI:10.1038/s41421-018-0019-0.
[18]
Pinto R,Vågbø CB,Jakobsson ME,et al. The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA[J]. Nucleic Acids Res,2020,48(2):830-846. DOI:10.1093/nar/gkz1147.
[19]
Huang Y,Yan J,Li Q,et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res,2015,43(1):373-384. DOI:10.1093/nar/gku1276.
[20]
Fedeles BI,Singh V,Delaney JC,et al. The AlkB Family of Fe(Ⅱ)/α-Ketoglutarate-dependent Dioxygenases:Repairing Nucleic Acid Alkylation Damage and Beyond[J]. J Biol Chem,2015,290(34):20734-20742. DOI:10.1074/jbc.R115.656462.
[21]
Zheng G,Dahl JA,Niu Y,et al. ALKBH5 is a mammalian rna demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell,2013,49(1):18-29. DOI:10.1016/j.molcel.2012.10.015.
[22]
Wei J,Liu F,Lu Z,et al. Differential m6A,m6Am,and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm[J]. Mol Cell,2018,71(6):973-985. DOI:10.1016/j.molcel.2018.08.011.
[23]
Tang C,Klukovich R,Peng H,et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′UTR mRNAs in male germ cells[J]. Proc Natl Acad Sci U S A,2018,115(2):E325-E333. DOI:10.1073/pnas.1717794115.
[24]
Zou S,Toh JD,Wong KH,et al. N6-Methyladenosine:a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5[J]. Sci Rep,2016,6(1):25677. DOI:10.1038/srep25677.
[25]
Koh CWQ,Goh YT,Goh WSS. Atlas of quantitative single-base-resolution N6-methyl-adenine methylomes[J]. Nat Commun,2019,10(1):5636. DOI:10.1038/s41467-019-13561-z.
[26]
Zhao YL,Liu YH,Wu RF,et al. Understanding m6A Function Through Uncovering the Diversity Roles of YTH Domain-Containing Proteins[J]. Mol Biotechnol,2019,61(5):355-364. DOI:10.1007/s12033-018-00149-z.
[27]
Li Y,Bedi RK,Wiedmer L,et al. Flexible Binding of m6A Reader Protein YTHDC1 to Its Preferred RNA Motif[J]. J Chem Theory Comput,2019,15(12):7004-7014. DOI:10.1021/acs.jctc.9b00987.
[28]
Meyer KD,Patil DP,Zhou J,et al. 5′UTR m6A Promotes Cap-Independent Translation[J]. Cell,2015,163(4):999-1010. DOI:10.1016/j.cell.2015.10.012.
[29]
Wang X,Zhao BS,Roundtree IA,et al. N6-methyladenosine Modulates Messenger RNA Translation Efficiency[J]. Cell,2015,161(6):1388-1399. DOI:10.1016/j.cell.2015.05.014.
[30]
Mao Y,Dong L,Liu X,et al. m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2[J]. Nat Commun,2019,10(1):5332. DOI:10.1038/s41467-019-13317-9.
[31]
Jain D,Puno MR,Meydan C,et al. Ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2[J]. Elife,2018(7):e30919. DOI:10.7554/eLife.30919.
[32]
Geula S,Moshitch-Moshkovitz S,Dominissini D,et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science,2015,347(6225):1002-1006. DOI:10.1126/science.1261417.
[33]
Wu R,Liu Y,Zhao Y,et al. m6A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner[J]. Cell Death Dis,2019,10(3):171. DOI:10.1038/s41419-019-1417-4.
[34]
Yang D,Qiao J,Wang G,et al. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential[J]. Nucleic Acids Res,2018,46(8):3906-3920. DOI:10.1093/nar/gky130.
[35]
Yu J,Shen L,Liu Y,et al. The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling[J]. Mol Cell Biochem,2020,463(1-2):203-210. DOI:10.1007/s11010-019-03641-5.
[36]
Yan G,Yuan Y,He M,et al. m6A Methylation of Precursor-miR-320/RUNX2 Controls Osteogenic Potential of Bone Marrow-Derived Mesenchymal Stem Cells[J]. Mol Ther Nucleic Acids,2020,19:421-436. DOI:10.1016/j.omtn.2019.12.001.
[37]
Wang Y,Wang R,Yao B,et al. TNF-α suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m6A-demethylation of Nanog mRNA[J]. Sci China Life Sci,2020,63(1):80-91. DOI:10.1007/s11427-019-9826-7.
[38]
Lee H,Bao S,Qian Y,et al. Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation[J]. Nat Cell Biol,2019,21(6):700-709. DOI:10.1038/s41556-019-0318-1.
[39]
Cheng Y,Luo H,Izzo F,et al. m6A RNA Methylation Maintains Hematopoietic Stem Cell Identity and Symmetric Commitment[J]. Cell Rep,2019,28(7):1703-1716. DOI:10.1016/j.celrep.2019.07.032.
[40]
Li H,Tong J,Zhu S,et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature,2017,548(7667):338-342. DOI:10.1038/nature23450.
[41]
Weng H,Huang H,Chen J. RNA N6-Methyladenosine Modification in Normal and Malignant Hematopoiesis[J]. Adv Exp Med Biol,2019,1143:75-93. DOI:10.1007/978-981-13-7342-8_4.
[42]
Vu LP,Pickering BF,Cheng Y,et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells[J]. Nat Med,2017,23(11):1369-1376. DOI:10.1038/nm.4416.
[43]
Chen J,Zhang Y,Huang C,et al. m6A Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2[J]. Genomics Proteomics Bioinformatics,2019,17(2):154-168. DOI:10.1016/j.gpb.2018.12.007.
[44]
Cao Y,Zhuang Y,Chen J,et al. Dynamic effects of Fto in regulating the proliferation and differentiation of adult neural stem cells of mice[J]. Hum Mol Genet,2020,29(5):727-735. DOI:10.1093/hmg/ddz274.
[45]
Zhang S,Zhao BS,Zhou A,et al. m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program[J]. Cancer Cell,2017,31(4):591-606. DOI:10.1016/j.ccell.2017.02.013.
[1] 庄蕙嘉, 岳志成, 钟坤岑, 朱慧莉. 乳腺癌患者生育力保存的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 238-242.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[4] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[5] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[6] 孔欣, 宋宝全, 刘吟, 张剑, 仇惠英, 吴德沛. 异基因造血干细胞移植并发难治性呃逆一例[J]. 中华移植杂志(电子版), 2023, 17(04): 253-255.
[7] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要