切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 124 -128. doi: 10.3877/cma.j.issn.1674-1366.2021.02.011

所属专题: 文献

综述

整联蛋白在骨重建中的作用
郑慧敏1, 夏贤友2, 刘梦3, 姚晓雨1, 隋磊1,()   
  1. 1. 天津医科大学口腔医院修复科 300070
    2. 天津医科大学基础医学院细胞生物学系 300070
    3. 天津医科大学口腔医院综合科 300070
  • 收稿日期:2020-08-21 出版日期:2021-04-01
  • 通信作者: 隋磊

The function of integrin in bone remodeling

Huimin Zheng1, Xianyou Xia2, Meng Liu3, Xiaoyu Yao1, Lei Sui1,()   

  1. 1. Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
    2. Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
    3. Department of General, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
  • Received:2020-08-21 Published:2021-04-01
  • Corresponding author: Lei Sui
  • Supported by:
    National Natural Science Foundation of China(81970958)
引用本文:

郑慧敏, 夏贤友, 刘梦, 姚晓雨, 隋磊. 整联蛋白在骨重建中的作用[J/OL]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 124-128.

Huimin Zheng, Xianyou Xia, Meng Liu, Xiaoyu Yao, Lei Sui. The function of integrin in bone remodeling[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(02): 124-128.

骨重建过程是由间充质干细胞、成骨细胞、骨细胞和破骨细胞等多种细胞共同参与完成的细胞生物学反应。作为细胞膜表面重要跨膜蛋白,整联蛋白在该过程中发挥着重要作用。该文对整联蛋白在骨重建中的表达变化和功能作用进行综述,以期为后续研究及临床应用提供理论依据。

The process of bone remodeling is an important biological response, which involves various cells including mesenchymal stem cells, osteoblasts, osteocytes and osteoclasts. As an important transmembrane molecule, Integrins regulates a variety of cell functions during this process. Here, we shall briefly review the expression and function of integrins in bone remodeling in order to provide theoretical foundation for follow-up research and clinical application.

表1 整联蛋白亚基及其功能
[1]
Jensen PR, Andersen TL, Pennypacker BL,et al. A supra-cellular model for coupling of bone resorption to formation during remodeling:lessons from two bone resorption inhibitors affecting bone formation differently[J]. Biochem Biophys Res Commun,2014,443(2):694-699. DOI:10.1016/j.bbrc.2013.12.036.
[2]
Erben RG. Hypothesis:Coupling between Resorption and Formation in Cancellous bone Remodeling is a Mechanically Controlled Event[J]. Front Endocrinol(Lausanne),2015,6:82. DOI:10.3389/fendo.2015.00082.
[3]
Cao W, Helder MN, Bravenboer N,et al. Is There a Governing Role of Osteocytes in Bone Tissue Regeneration?[J]. Curr Osteoporos Rep,2020,18(5):541-550. DOI:10.1007/s11914-020-00610-6.
[4]
Søe K, Delaisse JM, Borggaard XG. Osteoclast formation at the bone marrow/bone surface interface:Importance of structural elements,matrix,and intercellular communication[J]. Semin Cell Dev Biol,2020. DOI:10.1016/j.semcdb.2020.05.016.
[5]
Lee HM, Seo SR, Kim J,et al. Expression dynamics of integrin α2,α3,and αV upon osteogenic differentiation of human mesenchymal stem cells[J]. Stem cell Res Ther,2020,11(1):210. DOI:10.1186/s13287-020-01714-7.
[6]
Sun Z, Guo SS, Fässler R. Integrin-mediated mechanotransduction[J]. J Cell Biol,2016,215(4):445-456. DOI:10.1083/jcb.201609037.
[7]
Wang X, Schwartz Z, Gittens RA,et al. Role of integrin α2 β1 in mediating osteoblastic differentiation on three-dimensional titanium scaffolds with submicron-scale texture[J]. J Biomed Mater Res A,2015,103(6):1907-1918. DOI:10.1002/jbm.a.35323.
[8]
De Franceschi N, Hamidi H, Alanko J,et al. Integrin traffic - the update[J]. J Cell Sci,2015,128(5):839-852. DOI:10.1242/jcs.161653.
[9]
Geoghegan IP, Hoey DA, Mcnamara LM. Integrins in Osteocyte Biology and Mechanotransduction[J]. Curr Osteoporosis Rep,2019,17(4):195-206. DOI:10.1007/s11914-019-00520-2.
[10]
Kong L, Wang B, Yang X,et al. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation[J]. J Cell Mol Med,2020,24(6):3271-3281. DOI:10.1111/jcmm.15052.
[11]
Marie PJ, Haÿ E, Saidak Z. Integrin and cadherin signaling in bone:role and potential therapeutic targets[J]. Trends Endocrinol Metab,2014,25(11):567-575. DOI:10.1016/j.tem.2014.06.009.
[12]
Michael M, Parsons M. New perspectives on integrin-dependent adhesions[J]. Curr Opin Cell Biol,2020,63:31-37. DOI:10.1016/j.ceb.2019.12.008.
[13]
Shie MY, Ding SJ. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements[J]. Biomaterials,2013,34(28):6589-6606. DOI:10.1016/j.biomaterials.2013.05.075.
[14]
Uda Y, Azab E, Sun N,et al. Osteocyte Mechanobiology[J]. Curr Osteoporos Rep,2017,15(4):318-325. DOI:10.1007/s11914-017-0373-0.
[15]
Shin SY, Pozzi A, Boyd SK,et al. Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor signalling[J]. Osteoarthritis Cartilage,2016,24(10):1795-1806. DOI:10.1016/j.joca.2016.05.013.
[16]
Bayer ML, Svensson RB, Schjerling P,et al. Influence of the integrin alpha-1 subunit and its relationship with high-fat diet upon extracellular matrix synthesis in skeletal muscle and tendon[J]. Cell Tissue Res,2020,381(1):177-187. DOI:10.1007/s00441-020-03184-y.
[17]
Chiu LH, Lai WF, Chang SF,et al. The effect of type Ⅱ collagen on MSC osteogenic differentiation and bone defect repair[J]. Biomaterials,2014,35(9):2680-2691. DOI:10.1016/j.biomaterials.2013.12.005.
[18]
Lee HJ, Kim SY, Koh JM,et al. Polymorphisms and haplotypes of integrinalpha1(ITGA1)are associated with bone mineral density and fracture risk in postmenopausal Koreans[J]. Bone,2007,41(6):979-986. DOI:10.1016/j.bone.2007.08.034.
[19]
Adorno-Cruz V, Liu H. Regulation and functions of integrin α2 in cell adhesion and disease[J]. Genes Dis,2019,6(1):16-24. DOI:10.1016/j.gendis.2018.12.003.
[20]
Becerra-Bayona SM, Guiza-Arguello VR, Russell B,et al. Influence of collagen-based integrin α1 and α2 mediated signaling on human mesenchymal stem cell osteogenesis in three dimensional contexts[J]. J Biomed Mater Res A,2018,106(10):2594-2604. DOI:10.1002/jbm.a.36451.
[21]
Stange R, Kronenberg D, Timmen M,et al. Age-related bone deterioration is diminished by disrupted collagen sensing in integrin α2β1 deficient mice[J]. Bone,2013,56(1):48-54. DOI:10.1016/j.bone.2013.05.003.
[22]
Chen C, Jiang Z, Yang G. Laminins in osteogenic differentiation and pluripotency maintenance[J]. Differentiation,2020,114:13-19. DOI:10.1016/j.diff.2020.05.002.
[23]
Peng X, Nelson ES, Maiers JL,et al. New insights into vinculin function and regulation[J]. Int Rev Cell Mol Bio,2011,287:191-231. DOI:10.1016/b978-0-12-386043-9.00005-0.
[24]
Lo YP, Liu YS, Rimando MG,et al. Three-dimensional spherical spatial boundary conditions differentially regulate osteogenic differentiation of mesenchymal stromal cells[J]. Sci Rep,2016,6:21253. DOI:10.1038/srep21253.
[25]
Zheng H, Tian Y, Gao Q,et al. Hierarchical Micro-Nano Topography Promotes Cell Adhesion and Osteogenic Differentiation via Integrin α2-PI3K-AKT Signaling Axis[J]. Front Bioeng Biotechnol,2020,8:463. DOI:10.3389/fbioe.2020.00463.
[26]
Marie PJ. Targeting integrins to promote bone formation and repair[J]. Nat Rev Endocrinol,2013,9(5):288-295. DOI:10.1038/nrendo.2013.4.
[27]
Salmela M, Jokinen J, Tiitta S,et al. Integrin α2β1 in nonactivated conformation can induce focal adhesion kinase signaling[J]. Sci Rep,2017,7(1):3414. DOI:10.1038/s41598-017-03640-w.
[28]
Yoon SO, Shin S, Karreth FA,et al. Focal Adhesion- and IGF1R-Dependent Survival and Migratory Pathways Mediate Tumor Resistance to mTORC1/2 Inhibition[J]. Mol Cell,2017,67(3):512-527.e4. DOI:10.1016/j.molcel.2017.06.033.
[29]
Guan M, Yao W, Liu R,et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass[J]. Nat Med,2012,18(3):456-462. DOI:10.1038/nm.2665.
[30]
Wei Y, Jiang S, Si M,et al. Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses[J]. Adv Mater,2019,31(16):e1900582. DOI:10.1002/adma.201900582.
[31]
Zhu J, Cai Q, Zhang X,et al. Biological characteristics of mesenchymal stem cells grown on different topographical nanofibrous poly-L-lactide meshes[J]. J Biomed Nanotechnol,2013,9(10):1757-1767. DOI:10.1166/jbn.2013.1661.
[32]
Raines AL, Berger MB, Schwartz Z,et al. Osteoblasts grown on microroughened titanium surfaces regulate angiogenic growth factor production through specific integrin receptors[J]. Acta Biomater,2019,97:578-586. DOI:10.1016/j.actbio.2019.07.036.
[33]
Chen Q, Shou P, Zhang L,et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells[J]. Stem cells,2014,32(2):327-337. DOI:10.1002/stem.1567.
[34]
Hartman GD, Duggan ME. αvβ3 Integrin antagonists as inhibitors of bone resorption[J]. Expert Opin Investig Drugs,2000,9(6):1281-1291. DOI:10.1517/13543784.9.6.1281.
[35]
Wang Y, Guo Q, Hei H,et al. BK ablation attenuates osteoblast bone formation via integrin pathway[J]. Cell Death Dis,2019,10(10):738. DOI:10.1038/s41419-019-1972-8.
[36]
Globus RK, Amblard D, Nishimura Y,et al. Skeletal phenotype of growing transgenic mice that express a function-perturbing form of beta1 integrin in osteoblasts[J]. Calcif Tissue Int,2005,76(1):39-49. DOI:10.1007/s00223-004-0309-4.
[37]
Brunner M, Millon-Frémillon A, Chevalier G,et al. Osteoblast mineralization requires beta1 integrin/ICAP-1-dependent fibronectin deposition[J]. J Cell Biol,2011,194(2):307-322. DOI:10.1083/jcb.201007108.
[38]
Qin L, Liu W, Cao H,et al. Molecular mechanosensors in osteocytes[J]. Bone Res,2020,8:23. DOI:10.1038/s41413-020-0099-y.
[39]
Cora-Cruz JJ, Diffoot-Carlo N, Sundaram PA. Vinculin expression in MC3T3-E1 cells in response to mechanical stimulus[J]. Data Brief,2016,6:94-100. DOI:10.1016/j.dib.2015.11.052.
[40]
Zhang K, Barragan-Adjemian C, Ye L,et al. E11/gp38 selective expression in osteocytes:regulation by mechanical strain and role in dendrite elongation[J]. Mol Cell Biol,2006,26(12):4539-4552. DOI:10.1128/mcb.02120-05.
[41]
Nobuta H, Katagi M, Kume S,et al. A role for bone marrow-derived cells in diabetic nephropathy[J]. FASEB J,2019,33(3):4067-4076. DOI:10.1096/fj.201801825R.
[42]
Brunner M, Jurdic P, Tuckerman JP,et al. New insights into adhesion signaling in bone formation[J]. Int Rev Cell Mol Biol,2013,305:1-68. DOI:10.1016/B978-0-12-407695-2.00001-9.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[3] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[4] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[5] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[6] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[7] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[8] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[9] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[10] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[11] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[12] 张颖, 赵鑫, 陈佳梅, 李雁. 术前化疗对CRS+HIPEC 治疗腹膜假黏液瘤预后影响的meta 分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 826-835.
[13] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[14] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[15] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
阅读次数
全文


摘要