切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 124 -128. doi: 10.3877/cma.j.issn.1674-1366.2021.02.011

所属专题: 文献

综述

整联蛋白在骨重建中的作用
郑慧敏1, 夏贤友2, 刘梦3, 姚晓雨1, 隋磊1,()   
  1. 1. 天津医科大学口腔医院修复科 300070
    2. 天津医科大学基础医学院细胞生物学系 300070
    3. 天津医科大学口腔医院综合科 300070
  • 收稿日期:2020-08-21 出版日期:2021-04-01
  • 通信作者: 隋磊

The function of integrin in bone remodeling

Huimin Zheng1, Xianyou Xia2, Meng Liu3, Xiaoyu Yao1, Lei Sui1,()   

  1. 1. Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
    2. Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
    3. Department of General, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
  • Received:2020-08-21 Published:2021-04-01
  • Corresponding author: Lei Sui
  • Supported by:
    National Natural Science Foundation of China(81970958)
引用本文:

郑慧敏, 夏贤友, 刘梦, 姚晓雨, 隋磊. 整联蛋白在骨重建中的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 124-128.

Huimin Zheng, Xianyou Xia, Meng Liu, Xiaoyu Yao, Lei Sui. The function of integrin in bone remodeling[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(02): 124-128.

骨重建过程是由间充质干细胞、成骨细胞、骨细胞和破骨细胞等多种细胞共同参与完成的细胞生物学反应。作为细胞膜表面重要跨膜蛋白,整联蛋白在该过程中发挥着重要作用。该文对整联蛋白在骨重建中的表达变化和功能作用进行综述,以期为后续研究及临床应用提供理论依据。

The process of bone remodeling is an important biological response, which involves various cells including mesenchymal stem cells, osteoblasts, osteocytes and osteoclasts. As an important transmembrane molecule, Integrins regulates a variety of cell functions during this process. Here, we shall briefly review the expression and function of integrins in bone remodeling in order to provide theoretical foundation for follow-up research and clinical application.

表1 整联蛋白亚基及其功能
[1]
Jensen PR, Andersen TL, Pennypacker BL,et al. A supra-cellular model for coupling of bone resorption to formation during remodeling:lessons from two bone resorption inhibitors affecting bone formation differently[J]. Biochem Biophys Res Commun,2014,443(2):694-699. DOI:10.1016/j.bbrc.2013.12.036.
[2]
Erben RG. Hypothesis:Coupling between Resorption and Formation in Cancellous bone Remodeling is a Mechanically Controlled Event[J]. Front Endocrinol(Lausanne),2015,6:82. DOI:10.3389/fendo.2015.00082.
[3]
Cao W, Helder MN, Bravenboer N,et al. Is There a Governing Role of Osteocytes in Bone Tissue Regeneration?[J]. Curr Osteoporos Rep,2020,18(5):541-550. DOI:10.1007/s11914-020-00610-6.
[4]
Søe K, Delaisse JM, Borggaard XG. Osteoclast formation at the bone marrow/bone surface interface:Importance of structural elements,matrix,and intercellular communication[J]. Semin Cell Dev Biol,2020. DOI:10.1016/j.semcdb.2020.05.016.
[5]
Lee HM, Seo SR, Kim J,et al. Expression dynamics of integrin α2,α3,and αV upon osteogenic differentiation of human mesenchymal stem cells[J]. Stem cell Res Ther,2020,11(1):210. DOI:10.1186/s13287-020-01714-7.
[6]
Sun Z, Guo SS, Fässler R. Integrin-mediated mechanotransduction[J]. J Cell Biol,2016,215(4):445-456. DOI:10.1083/jcb.201609037.
[7]
Wang X, Schwartz Z, Gittens RA,et al. Role of integrin α2 β1 in mediating osteoblastic differentiation on three-dimensional titanium scaffolds with submicron-scale texture[J]. J Biomed Mater Res A,2015,103(6):1907-1918. DOI:10.1002/jbm.a.35323.
[8]
De Franceschi N, Hamidi H, Alanko J,et al. Integrin traffic - the update[J]. J Cell Sci,2015,128(5):839-852. DOI:10.1242/jcs.161653.
[9]
Geoghegan IP, Hoey DA, Mcnamara LM. Integrins in Osteocyte Biology and Mechanotransduction[J]. Curr Osteoporosis Rep,2019,17(4):195-206. DOI:10.1007/s11914-019-00520-2.
[10]
Kong L, Wang B, Yang X,et al. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation[J]. J Cell Mol Med,2020,24(6):3271-3281. DOI:10.1111/jcmm.15052.
[11]
Marie PJ, Haÿ E, Saidak Z. Integrin and cadherin signaling in bone:role and potential therapeutic targets[J]. Trends Endocrinol Metab,2014,25(11):567-575. DOI:10.1016/j.tem.2014.06.009.
[12]
Michael M, Parsons M. New perspectives on integrin-dependent adhesions[J]. Curr Opin Cell Biol,2020,63:31-37. DOI:10.1016/j.ceb.2019.12.008.
[13]
Shie MY, Ding SJ. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements[J]. Biomaterials,2013,34(28):6589-6606. DOI:10.1016/j.biomaterials.2013.05.075.
[14]
Uda Y, Azab E, Sun N,et al. Osteocyte Mechanobiology[J]. Curr Osteoporos Rep,2017,15(4):318-325. DOI:10.1007/s11914-017-0373-0.
[15]
Shin SY, Pozzi A, Boyd SK,et al. Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor signalling[J]. Osteoarthritis Cartilage,2016,24(10):1795-1806. DOI:10.1016/j.joca.2016.05.013.
[16]
Bayer ML, Svensson RB, Schjerling P,et al. Influence of the integrin alpha-1 subunit and its relationship with high-fat diet upon extracellular matrix synthesis in skeletal muscle and tendon[J]. Cell Tissue Res,2020,381(1):177-187. DOI:10.1007/s00441-020-03184-y.
[17]
Chiu LH, Lai WF, Chang SF,et al. The effect of type Ⅱ collagen on MSC osteogenic differentiation and bone defect repair[J]. Biomaterials,2014,35(9):2680-2691. DOI:10.1016/j.biomaterials.2013.12.005.
[18]
Lee HJ, Kim SY, Koh JM,et al. Polymorphisms and haplotypes of integrinalpha1(ITGA1)are associated with bone mineral density and fracture risk in postmenopausal Koreans[J]. Bone,2007,41(6):979-986. DOI:10.1016/j.bone.2007.08.034.
[19]
Adorno-Cruz V, Liu H. Regulation and functions of integrin α2 in cell adhesion and disease[J]. Genes Dis,2019,6(1):16-24. DOI:10.1016/j.gendis.2018.12.003.
[20]
Becerra-Bayona SM, Guiza-Arguello VR, Russell B,et al. Influence of collagen-based integrin α1 and α2 mediated signaling on human mesenchymal stem cell osteogenesis in three dimensional contexts[J]. J Biomed Mater Res A,2018,106(10):2594-2604. DOI:10.1002/jbm.a.36451.
[21]
Stange R, Kronenberg D, Timmen M,et al. Age-related bone deterioration is diminished by disrupted collagen sensing in integrin α2β1 deficient mice[J]. Bone,2013,56(1):48-54. DOI:10.1016/j.bone.2013.05.003.
[22]
Chen C, Jiang Z, Yang G. Laminins in osteogenic differentiation and pluripotency maintenance[J]. Differentiation,2020,114:13-19. DOI:10.1016/j.diff.2020.05.002.
[23]
Peng X, Nelson ES, Maiers JL,et al. New insights into vinculin function and regulation[J]. Int Rev Cell Mol Bio,2011,287:191-231. DOI:10.1016/b978-0-12-386043-9.00005-0.
[24]
Lo YP, Liu YS, Rimando MG,et al. Three-dimensional spherical spatial boundary conditions differentially regulate osteogenic differentiation of mesenchymal stromal cells[J]. Sci Rep,2016,6:21253. DOI:10.1038/srep21253.
[25]
Zheng H, Tian Y, Gao Q,et al. Hierarchical Micro-Nano Topography Promotes Cell Adhesion and Osteogenic Differentiation via Integrin α2-PI3K-AKT Signaling Axis[J]. Front Bioeng Biotechnol,2020,8:463. DOI:10.3389/fbioe.2020.00463.
[26]
Marie PJ. Targeting integrins to promote bone formation and repair[J]. Nat Rev Endocrinol,2013,9(5):288-295. DOI:10.1038/nrendo.2013.4.
[27]
Salmela M, Jokinen J, Tiitta S,et al. Integrin α2β1 in nonactivated conformation can induce focal adhesion kinase signaling[J]. Sci Rep,2017,7(1):3414. DOI:10.1038/s41598-017-03640-w.
[28]
Yoon SO, Shin S, Karreth FA,et al. Focal Adhesion- and IGF1R-Dependent Survival and Migratory Pathways Mediate Tumor Resistance to mTORC1/2 Inhibition[J]. Mol Cell,2017,67(3):512-527.e4. DOI:10.1016/j.molcel.2017.06.033.
[29]
Guan M, Yao W, Liu R,et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass[J]. Nat Med,2012,18(3):456-462. DOI:10.1038/nm.2665.
[30]
Wei Y, Jiang S, Si M,et al. Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses[J]. Adv Mater,2019,31(16):e1900582. DOI:10.1002/adma.201900582.
[31]
Zhu J, Cai Q, Zhang X,et al. Biological characteristics of mesenchymal stem cells grown on different topographical nanofibrous poly-L-lactide meshes[J]. J Biomed Nanotechnol,2013,9(10):1757-1767. DOI:10.1166/jbn.2013.1661.
[32]
Raines AL, Berger MB, Schwartz Z,et al. Osteoblasts grown on microroughened titanium surfaces regulate angiogenic growth factor production through specific integrin receptors[J]. Acta Biomater,2019,97:578-586. DOI:10.1016/j.actbio.2019.07.036.
[33]
Chen Q, Shou P, Zhang L,et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells[J]. Stem cells,2014,32(2):327-337. DOI:10.1002/stem.1567.
[34]
Hartman GD, Duggan ME. αvβ3 Integrin antagonists as inhibitors of bone resorption[J]. Expert Opin Investig Drugs,2000,9(6):1281-1291. DOI:10.1517/13543784.9.6.1281.
[35]
Wang Y, Guo Q, Hei H,et al. BK ablation attenuates osteoblast bone formation via integrin pathway[J]. Cell Death Dis,2019,10(10):738. DOI:10.1038/s41419-019-1972-8.
[36]
Globus RK, Amblard D, Nishimura Y,et al. Skeletal phenotype of growing transgenic mice that express a function-perturbing form of beta1 integrin in osteoblasts[J]. Calcif Tissue Int,2005,76(1):39-49. DOI:10.1007/s00223-004-0309-4.
[37]
Brunner M, Millon-Frémillon A, Chevalier G,et al. Osteoblast mineralization requires beta1 integrin/ICAP-1-dependent fibronectin deposition[J]. J Cell Biol,2011,194(2):307-322. DOI:10.1083/jcb.201007108.
[38]
Qin L, Liu W, Cao H,et al. Molecular mechanosensors in osteocytes[J]. Bone Res,2020,8:23. DOI:10.1038/s41413-020-0099-y.
[39]
Cora-Cruz JJ, Diffoot-Carlo N, Sundaram PA. Vinculin expression in MC3T3-E1 cells in response to mechanical stimulus[J]. Data Brief,2016,6:94-100. DOI:10.1016/j.dib.2015.11.052.
[40]
Zhang K, Barragan-Adjemian C, Ye L,et al. E11/gp38 selective expression in osteocytes:regulation by mechanical strain and role in dendrite elongation[J]. Mol Cell Biol,2006,26(12):4539-4552. DOI:10.1128/mcb.02120-05.
[41]
Nobuta H, Katagi M, Kume S,et al. A role for bone marrow-derived cells in diabetic nephropathy[J]. FASEB J,2019,33(3):4067-4076. DOI:10.1096/fj.201801825R.
[42]
Brunner M, Jurdic P, Tuckerman JP,et al. New insights into adhesion signaling in bone formation[J]. Int Rev Cell Mol Biol,2013,305:1-68. DOI:10.1016/B978-0-12-407695-2.00001-9.
[1] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[2] 张卫平, 王婧玲, 刘志兴, 陈莉, 谌芳群. 肾透明细胞癌高帧频超声造影时间-强度曲线特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 916-922.
[3] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[4] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[5] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[6] 张华, 孙宇, 乡世健, 李樱媚, 王小群. 循环肿瘤细胞预测晚期胃肠癌患者化疗药物敏感性的研究[J]. 中华普通外科学文献(电子版), 2023, 17(06): 422-425.
[7] 董杰, 杨松, 杨浩, 陈翔, 张万里. 乙酰辅酶A羧化酶2基因高甲基化与肝细胞癌临床病理因素和生存期的关系[J]. 中华普通外科学文献(电子版), 2023, 17(06): 433-437.
[8] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[9] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[10] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[11] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[12] 辛彩焕, 熊辉. 非疫区36例布鲁菌病患者的临床特征及诊疗分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 927-931.
[13] 杨琬芳, 许晶, 张耀方, 王青, 杨智超, 任方刚, 王宏伟. NK和NKT细胞对急性髓系白血病患者的临床影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 932-938.
[14] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[15] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
阅读次数
全文


摘要