切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (01) : 72 -76. doi: 10.3877/cma.j.issn.1674-1366.2016.06.014

所属专题: 口腔医学 文献

综述

口腔中生物膜分散机制的研究进展
刘冠琪1, 张恺2, 艾虹1,()   
  1. 1. 510630 广州,中山大学附属第三医院口腔医学部正畸科
    2. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2015-06-22 出版日期:2016-02-01
  • 通信作者: 艾虹
  • 基金资助:
    国家自然科学基金(81470766)

Review of the mechanisms of oral biofilm dispersal

Guanqi Liu1, Kai Zhang2, Hong Ai1,()   

  1. 1. Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
    2. Guahua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2015-06-22 Published:2016-02-01
  • Corresponding author: Hong Ai
  • About author:
    Corresponding author: Ai Hong, Email:
引用本文:

刘冠琪, 张恺, 艾虹. 口腔中生物膜分散机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2016, 10(01): 72-76.

Guanqi Liu, Kai Zhang, Hong Ai. Review of the mechanisms of oral biofilm dispersal[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(01): 72-76.

细菌生物膜是细菌在介质表面黏附生存的细菌群体,生物膜菌落的形成使得细菌更容易适应周围环境。在生物膜发展的最后一个阶段,细菌从生物膜菌落中分离出来然后分散到周围环境中,这个过程称为生物膜的分散。生物膜分散由酶促降解、种植传播、鼠李糖脂的产生等机制介导,并受到自身以及外界多种物理化学因素等调控。口腔中生物膜分散一方面使细菌得以从病灶扩散到新的部位导致感染性疾病的加重,而另一方面,分散开的细菌由于失去生物膜的保护而变得容易去除和杀灭。通过对生物膜分散机制的研究,找到促进生物膜分散的途径,解决治疗难治性细菌感染的难题,是近年来的研究热点。本文就生物膜形成发展、分散机制、调控和临床意义做一综述。

Bacterial biofilm is a structure that makes bacteria adhere to a medium surface and this kind of colonies allows bacteria to adapt to the surrounding environment more easily. The final stage of biofilm development is the detachment of cells from the biofilm colony and their dispersal into the environment, which is called as biofilm dispersal. Biofilm dispersal can be mediated by the mechanisms such as enzymatic degradation, seeding dispersal, and the production of rhamnolipids. It can be regulated by the factors inside or outside the biofilm colony. Biofilm dispersal plays an important role in the exacerbation and spread of infection within a host. On the other side, the dispersal bacteria will lose the protection of the biofilm and making itself more easily to be wiped out. Biofilm dispersal is a promising area of research that may lead to find a way to promote biofilm dispersal and to provide a new idea for solving the intractable bacterial infection. This review describes the current status of research on biofilm formation, the mechanisms of the dispersal, the regulation of the dispersal process and the clinical implications of biofilm dispersal. The potential therapeutic applications will also be discussed.

[1]
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms:a common cause of persistent infections[J]. Science,1999,284(5418):1318-1322.
[2]
Potera C. Forging a link between biofilms and disease[J]. Science,1999,283(5409):1837,1839.
[3]
Dewhirst FE, Chen T, Izard J,et al. The human oral microbiome[J]. J Bacteriol,2010,192(19):5002-5017.
[4]
Marsh PD, Moter A, Devine DA. Dental plaque biofilms:communities,conflict and control[J]. Periodontol 2000,2011,55(1):16-35.
[5]
Wang Z, Shen Y, Haapasalo M. Dental materials with antibiofilm properties[J]. Dent Mater,2014,30(2):e1-e16.
[6]
Bowen WH. Dental caries - not just holes in teeth!A perspective[J/OL]. Mol Oral Microbiol,2015[2015-11-24]. published online ahead of print September 7,2015].

URL    
[7]
Feuerstein O. Light therapy:complementary antibacterial treatment of oral biofilm[J]. Adv Dent Res,2012,24(2):103-107.
[8]
Sanchez-Vizuete P, Orgaz B, Aymerich S,et al. Pathogens protection against the action of disinfectants in multispecies biofilms[J]. Front Microbiol,2015(6):705.
[9]
de la Fuente-Nùñez C, Reffuveille F, Fernández L,et al. Bacterial biofilm development as a multicellular adaptation:antibiotic resistance and new therapeutic strategies[J]. Curr Opin Microbiol,2013,16(5):580-589.
[10]
Wu H, Moser C, Wang HZ,et al. Strategies for combating bacterial biofilm infections[J]. Int J Oral Sci,2015,7(1):1-7.
[11]
Barraud N, Kelso MJ, Rice SA,et al. Nitric oxide:a key mediator of biofilm dispersal with applications in infectious diseases[J]. Curr Pharm Des,2015,21(1):31-42.
[12]
Lister JL, Horswill AR. Staphylococcus aureus biofilms:recent developments in biofilm dispersal[J]. Front Cell Infect Microbiol,2014(4):178.
[13]
Siqueira WL, Custodio W, McDonald EE. New insights into the composition and functions of the acquired enamel pellicle[J]. J Dent Res,2012,91(12):1110-1118.
[14]
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization[J]. Microbiol Mol Biol Rev,2009,73(3):407-450.
[15]
Kolenbrander PE, Palmer RJ Jr, Periasamy S,et al. Oral multispecies biofilm development and the key role of cell-cell distance[J]. Nat Rev Microbiol,2010,8(7):471-480.
[16]
Kuramitsu HK, He X, Lux R,et al. Interspecies interactions within oral microbial communities[J]. Microbiol Mol Biol Rev,2007,71(4):653-670.
[17]
Banas JA, Vickerman MM. Glucan-binding proteins of the oral streptococci[J]. Crit Rev Oral Biol Med,2003,14(2):89-99.
[18]
Kachlany SC, Planet PJ, Desalle R,et al. flp-1,the first representative of a new pilin gene subfamily,is required for non-specific adherence of Actinobacillus actinomycetemcomitans[J]. Mol Microbiol,2001,40(3):542-554.
[19]
Inoue T, Shingaki R, Sogawa N,et al. Biofilm formation by a fimbriae-deficient mutant of Actinobacillus actinomycetemcomitans[J]. Microbiol Immunol,2003,47(11):877-881.
[20]
Petersen FC, Pecharki D, Scheie AA. Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide[J]. J Bacteriol,2004,186(18):6327-6331.
[21]
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms:from the natural environment to infectious diseases[J]. Nat Rev Microbiol,2004,2(2):95-108.
[22]
Fux CA, Wilson S, Stoodley P. Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model[J]. J Bacteriol,2004,186(14):4486-4491.
[23]
Kaplan JB. Biofilm dispersal:mechanisms,clinical implications,and potential therapeutic uses[J]. J Dent Res,2010,89(3):205-218.
[24]
Karatan E, Watnick P. Signals,regulatory networks,and materials that build and break bacterial biofilms[J]. Microbiol Mol Biol Rev,2009,73(2):310-347.
[25]
Ragunath C, DiFranco K, Shanmugam M,et al. Surface display of Aggregatibacter actinomycetemcomitans autotransporter Aae and dispersin B hybrid act as antibiofilm agents[J]. Mol Oral Microbiol,2015[2015-11-24]. published online ahead of print August 17,2015].

URL    
[26]
Marcano A, Ba O, Thebault P,et al. Elucidation of innovative antibiofilm materials[J]. Colloids Surf B Biointerfaces,2015(136):56-63.
[27]
Fekete A, Borbás A, Gyémánt G,et al. Synthesis of beta-(1→6)-linked N-acetyl-D-glucosamine oligosaccharide substrates and their hydrolysis by Dispersin B[J]. Carbohydr Res,2011,346(12):1445-1453.
[28]
Stacy A, Everett J, Jorth P,et al. Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection[J]. Proc Natl Acad Sci U S A,2014,111(21):7819-7824.
[29]
Izano EA, Sadovskaya I, Vinogradov E,et al. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae[J]. Microb Pathog,2007,43(1):1-9.
[30]
Asai K, Yamada K, Yagi T,et al. Effect of incubation atmosphere on the production and composition of staphylococcal biofilms[J]. J Infect Chemother,2015,21(1):55-61.
[31]
Itoh Y, Wang X, Hinnebusch BJ,et al. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms[J]. J Bacteriol,2005,187(1):382-387.
[32]
Stern R, Jedrzejas MJ. Hyaluronidases:their genomics,structures,and mechanisms of action[J]. Chem Rev,2006,106(3):818-839.
[33]
Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase:a biological overview[J]. Life Sci,2007,80(21):1921-1943.
[34]
Hart ME, Tsang LH, Deck J,et al. Hyaluronidase expression and biofilm involvement in Staphylococcus aureus UAMS-1 and its sarA,agr and sarA agr regulatory mutants[J]. Microbiology,2013,159(Pt 4):782-791.
[35]
Pecharki D, Petersen FC, Scheie AA. Role of hyaluronidase in Streptococcus intermedius biofilm[J]. Microbiology,2008,154(Pt 3):932-938.
[36]
Kaplan JB, Meyenhofer MF, Fine DH. Biofilm growth and detachment of Actinobacillus actinomycetemcomitans[J]. J Bacteriol,2003,185(4):1399-1404.
[37]
Ma L, Conover M, Lu H,et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix[J]. PLoS Pathog,2009,5(3):e1000354.
[38]
Yarwood JM, Bartels DJ, Volper EM,et al. Quorum sensing in Staphylococcus aureus biofilms[J]. J Bacteriol,2004,186(6):1838-1850.
[39]
Webb JS, Thompson LS, James S,et al. Cell death in Pseudomonas aeruginosa biofilm development[J]. J Bacteriol,2003,185(15):4585-4592.
[40]
Kaplan JB, Ragunath C, Ramasubbu N,et al. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity[J]. J Bacteriol,2003,185(16):4693-4698.
[41]
Kaplan JB, Fine DH. Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria[J]. Appl Environ Microbiol,2002,68(10):4943-4950.
[42]
Boles BR, Thoendel M, Singh PK. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms[J]. Mol Microbiol,2005,57(5):1210-1223.
[43]
Hunt SM, Werner EM, Huang B,et al. Hypothesis for the role of nutrient starvation in biofilm detachment[J]. Appl Environ Microbiol,2004,70(12):7418-7425.
[44]
Kim LH, Jung Y, Yu HW,et al. Physicochemical interactions between rhamnolipids and Pseudomonas aeruginosa biofilm layers[J]. Environ Sci Technol,2015,49(6):3718-3726.
[45]
Chrzanowski Ł, Lawniczak Ł, Czaczyk K. Why do microorganisms produce rhamnolipids?[J]. World J Microbiol Biotechnol,2012,28(2):401-419.
[46]
Dusane DH, Nancharaiah YV, Zinjarde SS,et al. Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms[J]. Colloids Surf B Biointerfaces,2010,81(1):242-248.
[47]
Kolodkin-Gal I, Romero D, Cao S,et al. D-amino acids trigger biofilm disassembly[J]. Science,2010,328(5978):627-629.
[48]
Kolodkin-Gal I, Cao S, Chai L,et al. A self-produced trigger for biofilm disassembly that targets exopolysaccharide[J]. Cell,2012,149(3):684-692.
[49]
Choi YC, Morgenroth E. Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation[J]. Water Sci Technol,2003,47(5):69-76.
[50]
Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents[J]. Curr Pharm Des,2015,21(1):5-11.
[51]
Rahmani-Badi A, Sepehr S, Fallahi H,et al. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique[J]. Front Microbiol,2015(6):383.
[52]
Jiménez-Fernández A, López-Sánchez A, Calero P,et al. The c-di-GMP phosphodiesterase BifA regulates biofilm development in Pseudomonas putida[J]. Environ Microbiol Rep,2015,7(1):78-84.
[53]
Alexander SA, Kyi C, Schiesser CH. Nitroxides as anti-biofilm compounds for the treatment of Pseudomonas aeruginosa and mixed-culture biofilms[J]. Org Biomol Chem,2015,13(16):4751-4759.
[54]
Bansal S, Harjai K, Chhibber S. Aeromonas punctata derived depolymerase improves susceptibility of Klebsiella pneumoniae biofilm to gentamicin[J]. BMC Microbiol,2015(15):119.
[55]
Marvasi M, Durie IA, McLamore ES,et al. Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels[J]. AMB Express,2015(5):28.
[1] 孙国先, 徐媛, 刘微丽, 郑庆斌, 侯红玲. 辛普森菌群多样性指数与降钙素原对机械通气细菌性肺炎患者的预测价值研究[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 28-32.
[2] 魏权, 张燊, 陈慧佳, 邹姮, 胡丽娜. 女性生殖道微生物群与辅助生殖技术相关性研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 151-155.
[3] 张利, 张阳, 马菁菁, 喻哲昊, 葛亮, 孙林春. 细胞壁锚定蛋白SasX调控RNAⅢ参与金黄色葡萄球菌ST239克隆生物膜形成及致病性相关研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 252-259.
[4] 李梦声, 韩中博. 胃癌的高危可控因素——幽门螺杆菌感染[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 145-150.
[5] 王锃涛, 王宪波, 曹钰, 郝禹, 韩俊燕, 曾辉. 基于多色流式降维聚类方法的自发性细菌性腹膜炎患者T淋巴细胞亚群分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 92-101.
[6] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[7] 卞天丹, 宋爽, 陶臻. 高毒力肺炎克雷伯菌分子学机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 438-441.
[8] 郭长江, 冷建刚, 邵伟. 阿莫西林克拉维酸钾联合布地奈德治疗小儿反复细菌性呼吸道感染[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 394-396.
[9] 朱伟权, 叶善平, 唐和春, 刘东宁, 鞠后琼, 仲崇晗, 黄智翔, 李太原. 机器人辅助直肠癌NOSES术后细菌学及肿瘤学结果的前瞻性研究[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 282-287.
[10] 朱敏, 李法强. CD64指数联合降钙素原、白介素-6、血清淀粉样蛋白A检测对重型颅脑损伤术后颅内细菌感染的诊断价值[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 26-31.
[11] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
[12] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[13] 王晓苏, 戴铮, 朱嘉嘉, 李启超, 张李涛. BacT/ALERT两种血培养系统8种血培养瓶对模拟菌血症标本检测能力的对比研究[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 207-213.
[14] 刘平娟, 罗科城, 吴家茵, 廖康, 胡雯雯, 陈怡丽. 神经内科重症监护室患者肠道耐碳青霉烯类肠杆菌目细菌主动筛查研究[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 235-240.
[15] 杨锐富, 周燕斌. 主要协同转运蛋白超家族膜转运蛋白与细菌生物膜形成的相关性研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 77-81.
阅读次数
全文


摘要