切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 96 -102. doi: 10.3877/cma.j.issn.1674-1366.2024.02.004

论著

乳酸乳球菌对致龋菌生长及生物膜形成的作用
张延清1, 冯少霞1, 陈宇1,()   
  1. 1. 广州医科大学附属妇女儿童医疗中心口腔科,广州 510623
  • 收稿日期:2024-01-05 出版日期:2024-04-01
  • 通信作者: 陈宇

The effect of Lactococcus lactis on the growth and biofilm formation of cariogenic bacteria

Yanqing Zhang1, Shaoxia Feng1, Yu Chen1,()   

  1. 1. Department of Stomatology, Affiliated Women and Children′s Medical Center of Guangzhou Medical University, Guangzhou 510623, China
  • Received:2024-01-05 Published:2024-04-01
  • Corresponding author: Yu Chen
引用本文:

张延清, 冯少霞, 陈宇. 乳酸乳球菌对致龋菌生长及生物膜形成的作用[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 96-102.

Yanqing Zhang, Shaoxia Feng, Yu Chen. The effect of Lactococcus lactis on the growth and biofilm formation of cariogenic bacteria[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(02): 96-102.

目的

研究乳酸乳球菌(Ll)对4种致龋菌生长及生物膜形成的影响,为Ll龋病防治提供基础。

方法

厌氧条件下培养Ll、变异链球菌(Sm)、内氏放线菌(An)、黏放线菌(Av)和嗜酸乳杆菌(La),琼脂扩散实验检测Ll对4种致龋菌的抑菌圈直径(IZD);琼脂板竞争实验检测Ll与4种致龋菌的拮抗相互作用;4种致龋菌单独培养生物膜为单独培养组,Ll分别与其共培养生物膜为共培养组,结晶紫染色法(CVS)及扫描电镜(SEM)检测Ll对4种致龋菌生物膜形成的影响。采用SPSS 20.0统计软件数据分析。Ll对4种致龋菌的IZD整体分析采用单因素方差分析,Tukey′s HSD检验进行组间多重比较,采用Student′s t检验对细菌生物膜量进行比较。

结果

琼脂扩散实验结果显示,Ll对4种致龋菌均表现出一定的抑制作用。Ll对An的IZD最大,为(11.97 ± 0.40)mm,对Sm的IZD最小,为(4.67 ± 0.32)mm。Ll对4种致龋菌的IZD两两比较,差异有统计学意义(F = 241.22,P<0.001)。琼脂板竞争实验显示,Ll对La、An、Av表现为竞争性抑制作用;CVS结果显示,Ll与Sm、An共培养形成的双菌种生物膜的生物膜量分别为(30.66 ± 0.48)、(10.27 ± 0.04),Sm、An单独培养形成的单菌种生物膜的生物膜量分别为(80.26 ± 2.55)、(73.98 ± 0.35),Sm、An双菌种生物膜的生物膜量与单菌种生物膜的生物膜量比较差异有统计学意义(tSm = 19.090,PSm<0.001,tAn = 183.3,PAn<0.001)。SEM结果显示,Ll与Sm或An共培养形成的双菌种生物膜明显变薄。

结论

Ll可抑制Sm、An、Av和La生长,并减少Sm、An生物膜的形成。

Objective

To study the effects of Lactococcus lactis (Ll) on the growth and biofilm formation of 4 kinds of cariogenic bacteria, and to provide the basis for the application in caries prevention and control.

Methods

Ll, Streptococcus mutans (Sm) , Actinomyces naeslundii (An) , Actinomyces viscosus (Av) and Lactobacillus acidophilus (La) were cultured under anaerobic conditions. A spot-on-lawn assay was used to evaluate the inhibition of Ll for these 4 kinds of cariogenic bacteria. The antagonistic interaction between Ll and these cariogenic bacteria was detected by plate competition test. The four kinds of cariogenic bacteria cultured separately were the single-cultured group, Ll co-cultured with 4 cariogenic bacteria separately were the co-cultured group. Crystal violet staining (CVS) and scanning electron microscopy (SEM) was used to evaluate the effect of Ll on the biofilm formation of the 4 kinds of cariogenic bacteria. SPSS 20.0 statistical software was used for data analysis. The data from the measurement of the inhibitory-zone diameters (IZD) of Ll against the 4 kinds of cariogenic bacteria were compared and statistically analyzed with One-Way analysis of variance (ANOVA) and tukey′s HSD test, and the amount of bacterial biofilm was compared by Student′s t test.

Results

Spot-on-lawn assay showed that Ll inhibited the growth of the 4 kinds of cariogenic bacteria. Ll had the largest IZD for An, (11.97 ± 0.40) mm, and the smallest for Sm, (4.67 ± 0.32) mm. Ll showed statistically significant difference in the IZD of the 4 kinds of cariogenic bacteria (F = 241.22, P<0.001) . The plate competition test showed that Ll showed competitive inhibition against La, An and Av. CVS showed that the biofilm quantity of Sm and An co-cultured with Ll was (30.66 ± 0.48) and (10.27 ± 0.04) , respectively. The biofilm quantity of Sm and An single-cultured was (80.26 ± 2.55) and (73.98 ± 0.35) , respectively. For Sm and An biofilm, there was statistical difference in the biofilm quantity between co-cultured and single-cultured groups (tSm = 19.090, PSm<0.001, tAn = 183.3, PAn<0.001) . The SEM showed that Sm and An showed significantly thinner biofilm in coexistence with Ll than in the absence of Ll.

Conclusion

Ll could inhibit the growth of Sm, An, Av, La, and reduce the formation of Sm, An biofilms.

图1 乳酸乳球菌(Ll)对致龋菌的抑菌效果 A:对变异链球菌(Sm)的抑菌圈;B:对内氏放线菌(An)的抑菌圈;C:对嗜酸乳杆菌(La)的抑菌圈;D:对黏放线菌(Av)的抑菌圈;内圈直径一致。
表1 乳酸乳球菌对致龋菌的抑菌圈直径(IZD)
图2 乳酸乳球菌(Ll)与致龋菌之间的竞争相互作用 A:对变异链球菌(Sm)竞争性抑制;B:对黏放线菌(Av)竞争性抑制;C:对内氏放线菌(An)竞争性抑制;D:对嗜酸乳杆菌(La)竞争性抑制;左侧菌落均为Ll。
图3 致龋菌单独培养及共培养24 h生物膜的生物膜量(与单菌种组相比,aP<0.05) 变异链球菌(Sm)或内氏放线菌(An)单独培养组生物膜量多于共培养组(P<0.05)。La为嗜酸乳杆菌;Av为黏放线菌。
图4 致龋菌单独培养及共培养24 h生物膜结晶紫染色结果 A ~ D:左侧为嗜酸乳杆菌(La)、变异链球菌(Sm)、黏放线菌(Av)、内氏放线菌(An)单独培养组,右侧为共培养组。
表2 致龋菌单独培养及共培养24 h生物膜的生物膜量(±s,×100)
图5 扫描电镜观察乳酸乳球菌(Ll)24 h生物膜表面形态 Ll单独培养24 h未见明显生物膜形成。
图6 扫描电镜观察致龋菌单独培养及共培养生物膜表面形态 A ~ D:分别为变异链球菌(Sm)、嗜酸乳杆菌(La)、黏放线菌(Av)及内氏放线菌(An)单独培养组;E ~ H:分别为Sm、La、Av及An与乳酸乳球菌(Ll)共培养组。
[3]
Tong ZZhou LLi J,et al. An in vitro investigation of Lactococcus lactis antagonizing cariogenic bacterium Streptococcus mutans[J]. Arch Oral Biol201257(4):376-382. DOI:10.1016/j.archoralbio.2011.10.003.
[4]
Hernández-González JCMartínez-Tapia ALazcano-Hernández C,et al. Bacteriocins from lactic acid bacteria. A powerful alternativeas antimicrobials,probiotics,and immunomodulators in veterinary medicine[J]. Animals(Basel)202111(4):979. DOI:10.3390/ani11040979.
[5]
Lambo MTChang XLiu D. The recent trend in the use of multistrain probiotics in livestock production:An overview[J]. Animals(Basel)202111(10):2805. DOI:10.3390/ani11102805.
[6]
Tavares LMde Jesus LCLda Silva TF,et al. Novel strategies for efficient production and delivery of live biotherapeutics and biotechnological uses of Lactococcus lactis:The lactic acid bacterium model[J]. Front Bioeng Biotechnol20208:517166. DOI:10.3389/fbioe.2020.517166.
[7]
Radaic Ade Jesus MBKapila YL. Bacterial anti-microbial peptides and nano-sized drug delivery systems:The state of the art toward improved bacteriocins[J]. J Control Release2020321:100-118. DOI:10.1016/j.jconrel.2020.02.001.
[8]
Le MNKawada-Matsuo MKomatsuzawa H. Gene rearrangement and modification of immunity factors are correlated with the insertion of bacteriocin cassettes in Streptococcus mutans[J]. Microbiol Spectr202210(3):e0180621. DOI:10.1128/spectrum.01806-21.
[9]
Kreth JZhu LMerritt J,et al. Role of sucrose in the fitness of Streptococcus mutans[J]. Oral Microbiol Immunol200823(3):213-219. DOI:10.1111/j.1399-302X.2007.00413.x.
[10]
Kim YJLee SH. Inhibitory effect of Lactococcus lactis HY 449 on cariogenic biofilm[J]. J Microbiol Biotechnol201626(11):1829-1835. DOI:10.4014/jmb.1604.04008.
[11]
Horiuchi MWashio JMayanagi H,et al. Transient acid-impairment of growth ability of oral StreptococcusActinomyces,and Lactobacillus:A possible ecological determinant in dental plaque[J]. Oral Microbiol Immunol200924(4):319-324. DOI:10.1111/j.1399-302X.2009.00517.x.
[12]
Deng LZou LWu J,et al. Voriconazole inhibits cross-kingdom interactions between Candida albicans and Actinomyces viscosus through the ergosterol pathway[J]. Int J Antimicrob Agents201953(6):805-813. DOI:10.1016/j.ijantimicag.2019.02.010.
[13]
Xiong KZhu HLi Y,et al. The arginine biosynthesis pathway of Candida albicans regulates its cross-kingdom interaction with Actinomyces viscosus to promote root caries[J]. Microbiol Spectr202210(4):e0078222. DOI:10.1128/spectrum.00782-22.
[1]
Li BCai QWang Z,et al. D-arginine enhances the effect of alpha-amylase on disassembling Actinomyces viscosus biofilm[J]. Front Bioeng Biotechnol202210:864012. DOI:10.3389/fbioe.2022.864012.
[2]
Wang JDu LFu Y,et al. ZnO nanoparticles inhibit the activity of Porphyromonas gingivalis and Actinomyces naeslundii and promote the mineralization of the cementum[J]. BMC Oral Health201919(1):84. DOI:10.1186/s12903-019-0780-y.
[1] 杨友涵, 文印宪, 陈廖斌. 噬菌体用于关节假体周围感染治疗的研究进展[J]. 中华关节外科杂志(电子版), 2024, 18(01): 125-130.
[2] 鄢锦丽, 陈大鹏. 益生菌在新生儿呼吸系统疾病临床治疗中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 517-522.
[3] 李小兵. 伤口细菌生物膜的影响和处理[J]. 中华损伤与修复杂志(电子版), 2020, 15(05): 422-422.
[4] 孙瑞朋, 孙静, 赵连魁, 李东军, 怀乔, 徐丽娟. 改性甲壳素生物修复膜治疗浅Ⅱ度烧伤的临床疗效[J]. 中华损伤与修复杂志(电子版), 2019, 14(04): 280-284.
[5] 张利, 张阳, 马菁菁, 喻哲昊, 葛亮, 孙林春. 细胞壁锚定蛋白SasX调控RNAⅢ参与金黄色葡萄球菌ST239克隆生物膜形成及致病性相关研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 252-259.
[6] 杨舒婷, 唐兢, 叶畅畅. 益生菌防治牙周疾病及种植体周围疾病的研究进展[J]. 中华口腔医学研究杂志(电子版), 2022, 16(01): 55-58.
[7] 姚丽萍, 张蕾, 林玉红, 张梦晗, 卢志山. 纳米银溶液用于慢性根尖周炎根管内封药的实验动物研究[J]. 中华口腔医学研究杂志(电子版), 2020, 14(02): 95-100.
[8] 马皓祯, 李晓岚. 器官型口腔黏膜感染模型在宿主-微生物关系研究的应用与展望[J]. 中华口腔医学研究杂志(电子版), 2019, 13(06): 321-327.
[9] 李晓岚, 王肖, 凌均棨, 胡晓莉, 邓动梅. 变异链球菌绿色荧光蛋白报告株在双菌种生物膜研究的应用[J]. 中华口腔医学研究杂志(电子版), 2019, 13(03): 136-143.
[10] 唐丽丽, 高林春, 刘晓青, 郑鸿, 彭焕芝. 术前干预口腔致病菌再分布对降低肺癌术后呼吸机相关性肺炎的临床分析[J]. 中华肺部疾病杂志(电子版), 2019, 12(05): 615-617.
[11] 董行, 郎东浩, 符雪, 李芳, 王凌峰. 群体感应系统与生物膜耐药机制的研究现状[J]. 中华临床医师杂志(电子版), 2021, 15(01): 57-60.
[12] 孙丹, 姬会春, 祝宇翀, 单宇, 刘军权, 廖雨琴. 三叶青提取物TH-w3对金黄色葡萄球菌生物膜的抑制和清除作用[J]. 中华临床实验室管理电子杂志, 2022, 10(04): 227-232.
[13] 李倩珺, 黄淑洪, 雷毅怡, 冯泳琳. 黄连对生物膜状态下耐氟康唑白色念珠菌凝集素样序列基因表达影响[J]. 中华临床实验室管理电子杂志, 2022, 10(02): 89-94.
[14] 杨锐富, 周燕斌. 主要协同转运蛋白超家族膜转运蛋白与细菌生物膜形成的相关性研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 77-81.
[15] 姜海迪, 王春霞, 贾永娟, 张慧, 赵梅娥. 脑出血患者血培养分离出胶红酵母菌的临床观察[J]. 中华诊断学电子杂志, 2021, 09(04): 247-250.
阅读次数
全文


摘要