切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (03) : 187 -192. doi: 10.3877/cma.j.issn.1674-1366.2016.03.007

所属专题: 文献

基础研究

酸碱处理多孔钛表面血清蛋白的吸附行为
温玉洁1, 李雪莲2, 姚依彤2, 简裕涛2,()   
  1. 1. 528000 佛山市口腔医院
    2. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室,广东省牙颌系统修复重建技术与材料工程技术研究中心
  • 收稿日期:2016-04-13 出版日期:2016-06-01
  • 通信作者: 简裕涛
  • 基金资助:
    国家自然科学基金(81470767)

Serum protein adsorption on acid-alkali treated porous titanium

Yujie Wen1, Xuelian Li2, Yitong Yao2, Yutao Jian2,()   

  1. 1. Foshan Stomatological Hospital, Foshan 528000, China
    2. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong engineering Research Center of Technology and Materials for Oral Reconstruction, Guangzhou 510055, China
  • Received:2016-04-13 Published:2016-06-01
  • Corresponding author: Yutao Jian
  • About author:
    Corresponding author: Jian Yutao, Email:
引用本文:

温玉洁, 李雪莲, 姚依彤, 简裕涛. 酸碱处理多孔钛表面血清蛋白的吸附行为[J]. 中华口腔医学研究杂志(电子版), 2016, 10(03): 187-192.

Yujie Wen, Xuelian Li, Yitong Yao, Yutao Jian. Serum protein adsorption on acid-alkali treated porous titanium[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(03): 187-192.

目的

研究酸碱处理后的多孔钛表面血清蛋白吸附行为。

方法

采用粉末冶金法制备多孔钛材料,使用酸碱处理后制作酸碱处理多孔钛(AAPT)试件51个,同时制备未行酸碱处理多孔钛(NTPT)及致密钛(NTDT)试件各35个。采用扫描电镜(SEM)观察NTDT试件表面形貌,用表面接触角分析仪与全自动气体吸附仪测定三组的表面接触角和比表面积(SSA)。BCA法测定NTDT、NTPT及AAPT组试件不同时间的蛋白吸附量。采用单因素方差分析进行统计分析,LSD-t检验进行两两比较。

结果

SEM显示NTDT表面光滑。AAPT组表面接触角(22.08°)显著小于NTPT组(93.7°)和NTDT组(75.69°),差异有统计学意义(F= 392.02,P<0.001)。AAPT组SSA(27.05)均高于NTDT组(3.74)和NTPT组(18.36),差异有统计学意义(F= 4586.10,P<0.001)。在各时间点,AAPT组吸附的蛋白质明显多于NTDT组和NTPT组(P<0.001);AAPT、NTPT和NTDT组表面的蛋白吸附随着时间逐渐增加,最终达到稳定。

结论

酸碱处理后的多孔钛可显著提高材料表面的血清蛋白吸附量。

Objective

To evaluate serum protein adsorption on acid-alkali treated porous titanium, thus to provide theoretical evidence for the favourable cytocompatibility.

Methods

Porous titanium discs were fabricated by powder metallurgy process, and then immersed in a mixed acid and NaOH solution to get acid-alkali-treated porous Ti (AAPT) . Fifty-one AAPT discs, 35 non-treated porous Ti (NTPT) discs and 35 non-treated commercial dense titanium (NTDT) discs were made. The surface morphology of NTDT was observed under a scanning electron microscopy (SEM) . Contact angle and specific surface area (SSA) of three groups were observed and studied by means of an optical contact angle measuring device and a specific surface area and pore size analyser. Protein adhesion of different time was quantitatively analyzed by BCA method. The level of significance was determined by One-Way ANOVA followed by a least significant difference (LSD) t-test for a multiple comparison procedure.

Results

NTDT presented smooth surface under SEM. The contact angle on the surface of AAPT (22.08°) and NTDT (75.69°) exhibited a statistically significantly lower in comparison to the contact angle of NTPT (93.7°) (F= 392.02, P<0.001) . SSA of AAPT (27.05) was higher than NTDT (3.74) and NTPT (18.36) (F= 4586.10, P<0.001) . At different period, the protein adsorption of AAPT was higher than that of NTDT and NTPT (P<0.001) .

Conclusion

The amount of serum protein adsorption could be significantly improved on acid-alkali treated porous titanium.

图1 NTDT(A、B)试件的表面形貌(SEM)
图2 座滴法下NTDT、NTPT和AAPT试件表面的水接触角
图3 NTDT、NTPT和AAPT试件的比表面积
图4 不同表面活性剂对AAPT试件吸附蛋白的解离效果
表1 三组试件各时间点的蛋白吸附量(mg/ml)
图5 不同时间NTDT、NTPT和AAPT试件的蛋白浓度
[1]
Geetha M, Singh AK, Asokamani R,et al. Ti based biomaterials,the ultimate choice for orthopaedic implants—a review[J]. Prog Mater Sci,2009,54(3):397-425.
[2]
Rubshtein AP, Trakhtenberga ISh, Makarova EB,et al. Porous material based on spongy titanium granules:structure,mechanical properties,and osseointegration[J]. Mater Sci Eng C Mater Biol Appl,2014(35):363-369.
[3]
刘帅,李湘霞,杨越,等.多孔纯钛孔隙率及孔隙尺寸对蛋白吸附及成骨细胞分化的影响[J/CD].中华口腔医学研究杂志:电子版,2015,9(3):193-199.
[4]
Puleo DA, Nanci A. Understanding and controlling the bone-implant interface[J]. Biomaterials,1999,20(23-24):2311-2321.
[5]
Håkansson M, Linse S. Protein reconstitution and 3D domain swapping[J]. Curr Protein Pepide Sci,2002,3(6):629-642.
[6]
Allen LT, Tosetto M, Miller IS,et al. Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction[J]. Biomaterials,2006,27(16):3096-3108.
[7]
Pegueroles M, Tonda-Turo C, Planell JA,et al. Adsorption of fibronectin,fibrinogen,and albumin on TiO2:time-resolved kinetics,structural changes,and competition study[J]. Biointerphases,2012,7(1-4):48.
[8]
Yang D, Lü X, Hong Y,et al. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials[J]. Biomaterials,2013,34(23):5747-5758.
[9]
Wehmeyer JL, Synowicki R, Bizios R,et al. Dynamic adsorption of albumin on nanostructured TiO2 thin films[J]. Mater Sci Eng C Mater Biol Appl,2010,30(2):277-282.
[10]
叶琦,石新莹,曹姗姗,等.多孔钛孔隙率和孔隙尺寸对其力学性能及细胞相容性的影响[J].口腔材料器械杂志,2013,22(1):7-12.
[11]
Wen HB, Liu Q, De Wijn JR,et al. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment[J]. J Mater Sci Mater Med,1998,9(3):121-128.
[12]
Singh AV, Vyas V, Patil R,et al. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation[J]. PLoS One,2011,6(9):e25029.
[13]
Rupp F, Scheideler L, Rehbein D,et al. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications[J]. Biomaterials,2004,25(7-8):1429-1438.
[14]
Aita H, Hori N, Takeuchi M,et al. The effect of ultraviolet functionalization of titanium on integration with bone[J]. Biomaterials,2009,30(6):1015-1125.
[15]
Zhao G, Schwartz Z, Wieland M. High surface energy enhances cell response to titanium substrate microstructure[J]. J Biomed Mater Res A,2005,74(1):49-58.
[16]
Chen H, Wang C, Zhu X,et al. Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology[J]. Mater Sci Eng C Mater Biol Appl,2014(43):182-188.
[17]
Yang J, Wang J, Yuan T,et al. The enhanced effect of surface microstructured porous titanium on adhesion and osteoblastic differentiation of mesenchymal stem cells[J]. J Mater Sci Mater Med,2013,24(9):2235-2246.
[18]
Onaizi SA, He L, Middelberg AP. Rapid screening of surfactant and biosurfactant surface cleaning performance[J]. Colloids Surf B Biointerfaces,2009,72(1):68-74.
[19]
Cei S, Karapetsa D, Aleo E,et al. Protein adsorption on a laser-modified titanium implant surface[J]. Implant Dent,2015,24(2):134-141.
[20]
Wu J, Zhou L, Ding X,et al. Biological effect of ultraviolet photocatalysis on nanoscale titanium with a focus on physicochemical mechanism[J]. Langmuir,2015,31(36):10037-10046.
[21]
Kratz F, Grass S, Umanskaya N,et al. Cleaning of biomaterial surfaces:protein removal by different solvents[J]. Colloids Surf B Biointerfaces,2015(128):28-35.
[22]
Saridakis E, Chayen NE, Sear RP. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium[J]. Proc Natl Acad Sci U S A,2006,103(3):597-601.
[23]
Sethuraman A, Han M, Kane RS,et al. Effect of surface wettability on the adhesion of proteins[J]. Langmuir,2004,20(18):7779-7788.
[24]
Kirchman DL, Henry DL, Dexter SC. Adsorption of proteins to surfaces in seawater[J]. Mar Chem,1989,27(3-4):201-217.
[25]
Taylor GT, Troy PJ, Sharma SK. Protein adsorption from seawater onto solid substrata,I. Influences of substratum surface properties and protein concentration[J]. Mar Chem,1994,45(1-2):15-30.
[26]
Kopf BS, Ruch S, Berner S,et al. The role of nanostructures and hydrophilicity in osseointegration:in-vitro protein-adsorption and blood-interaction studies[J]. J Biomed Mater Res A,2015,103(8):2661-2672.
[27]
Kopac T, Bozgeyik K. Effect of surface area enhancement on the adsorption of bovine serum albumin onto titanium dioxide[J]. Colloids Surf B Biointerfaces,2010,76(1):265-271.
[28]
Kopac T, Bozgeyik K, Yener J. Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide[J]. Colloids Surf A,2008,322(1-3):19-28.
[29]
Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces[J]. Adv Colloid Interface Sci,2011,162(1-2):87-106.
[30]
Vroman L, Adams AL, Fischer GC,et al. Interaction of high molecular weight kininogen,factor Ⅻ,and fibrinogen in plasma at interfaces[J]. Blood,1980,55(1):156-159.
[31]
Vroman L, Adams AL. Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces[J]. Surface Science,1969,16(1):438-446.
[32]
Jung SY, Lim SM, Albertorio F,et al. The Vroman effect:a molecular level description of fibrinogen displacement[J]. J Am Chem Soc,2003,125(42):12782-12786.
[33]
Daly SM, Przybycien TM, Tilton RD. Coverage-dependent orientation of lysozyme adsorbed on silica[J]. Langmuir,2003,19(9):3848-3857.
[34]
Wertz CF, Santore MM. Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces[J]. Langmuir,2002,18(4):1190-1199.
[1] 翟敬芳, 吴杰斌, 刘枭, 金宝, 王彦波, 陈洋, 王云, 周广玲, 周彬. 无创高频振荡通气在极低出生体重早产儿呼吸窘迫综合征初始呼吸支持治疗中的应用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 598-605.
[2] 黄石头, 魏洪波, 李德华. 三维打印钛种植体性能及临床应用的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 1-9.
[3] 关山, 张冰, 张开通, 王宇, 岳朝森, 程苒. 中国乳腺癌术后假体乳房重建补片材料应用现状[J]. 中华普外科手术学杂志(电子版), 2022, 16(02): 123-126.
[4] 刘刚, 袁新普, 张朝军, 张炎, 黄云, 吴晓宇, 田君. 钛夹辅助结肠镜定位用于结直肠癌手术的疗效及安全性分析[J]. 中华普外科手术学杂志(电子版), 2021, 15(06): 625-628.
[5] 冷昭富, 汪永新. 儿童去骨瓣减压术后颅骨成形术的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 313-317.
[6] 赵卫良, 李娟, 郑永, 谢森, 缪国专. 颅骨修补术后钛网外露的临床特点及手术疗效[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 297-300.
[7] 秦立宁, 许娜, 董静, 董栋, 林源. 新型H形解剖钛板治疗累及后壁/后柱髋臼骨折的疗效分析[J]. 中华老年骨科与康复电子杂志, 2021, 07(03): 147-151.
[8] 刘娟丽, 马四清, 陈强. 肺表面活性蛋白-D功能及其在肺部常见疾病中的研究进展[J]. 中华重症医学电子杂志, 2022, 08(02): 167-172.
[9] 袁杰, 武孝刚, 王金标, 刘璐, 王春琳. 3D打印聚醚醚酮材料在颅脑损伤后颅骨成形术中的应用疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 274-278.
[10] 赵德枭, 郭永坤, 王新军, 刘婉清, 陈冠岐, 毛建超, 单峤. 聚醚醚酮与钛网修补颅骨缺损的临床应用对比分析[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 362-365.
[11] 刘振华, 岑水忠, 叶伟佳, 李建君, 曾炜波, 靳安民, 邱素均. 传统cage-钛板与颈椎桥形锁定融合器结合颈椎前路减压融合内固定术治疗单节段脊髓型颈椎病的效果比较[J]. 中华临床医师杂志(电子版), 2022, 16(03): 213-219.
[12] 蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.
[13] 段林, 何艳艳, 李天晓, 陈松, 贺迎坤, 吴海刚. 镍钛合金支架表面修饰进展[J]. 中华介入放射学电子杂志, 2022, 10(01): 83-87.
[14] 赵莉, 陆柔剑, 叶飞, 黄保英, 王慧娟, 谭文杰. 一种灭活型样本保存液在新型冠状病毒核酸快速检测中的应用评价[J]. 中华临床实验室管理电子杂志, 2022, 10(01): 17-22.
[15] 郑武俊, 俞晓军, 鲍斌. CT定位栅术前精准定位联合胸腔镜隧道式骨性胸廓前间隙钛板内固定术在肋骨骨折中的应用[J]. 中华胸部外科电子杂志, 2021, 08(04): 264-268.
阅读次数
全文


摘要