切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (04) : 333 -336. doi: 10.3877/cma.j.issn.1674-1366.2015.04.017

所属专题: 口腔医学 文献

综述

基质金属蛋白酶介导牙本质粘接界面的生物降解及其拮抗剂的研究进展
孙素1, 肖玉鸿1,()   
  1. 1. 650032 昆明,成都军区昆明总医院口腔科,昆明医科大学教学医院
  • 收稿日期:2015-03-04 出版日期:2015-08-01
  • 通信作者: 肖玉鸿
  • 基金资助:
    国家自然科学基金(81460107)

The progress on the biodegradation of resin-dentin adhesive interface mediated by the matrix metalloproteinases and its antagonists

Su Sun1, Yuhong Xiao1,()   

  1. 1. Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming 650032, China
  • Received:2015-03-04 Published:2015-08-01
  • Corresponding author: Yuhong Xiao
  • About author:
    Corresponding author: Xiao Yuhong, Email: , Tel: 0871-64774939
引用本文:

孙素, 肖玉鸿. 基质金属蛋白酶介导牙本质粘接界面的生物降解及其拮抗剂的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2015, 09(04): 333-336.

Su Sun, Yuhong Xiao. The progress on the biodegradation of resin-dentin adhesive interface mediated by the matrix metalloproteinases and its antagonists[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(04): 333-336.

随着牙本质粘接技术的不断发展,粘接效果也得到很大提高,但树脂牙本质粘接界面仍然受到诸多因素的影响。有研究表明,牙本质粘接剂中的亲水性和酸性单体可使粘接混合层具有较强的吸水性,容易引起聚合物的水解。同时,混合层内的不稳定聚合物可使胶原纤维受到侵蚀从而变得脆弱,容易被宿主源性的基质金属蛋白酶(MMP)降解。因此,MMP在降解Ⅰ型胶原的过程中发挥着重要作用,从而影响牙本质的粘接耐久性。本文就MMP介导的树脂牙本质粘接界面生物降解机理及其拮抗剂的应用做一简要综述。

With the continuous development of dentin adhesive technology, adhesive effect has also been greatly improved, but the adhesive interface is still affected by many factors. The hydrophilic and acidic monomers of current dentin adhesives have made hybrid layer highly prone to water sorption. This, in turn, causes polymer degradation. These unstable polymers inside the hybrid layer may result in denuded collagen fibers, which become vulnerable to mechanical and hydrolytical fatigue, as well as degradation by host-derived the matrix metalloproteinases(MMPs)with collagenolytic activity. Therefore, MMPs have a crucial role in the degradation of typeⅠcollagen, thus affecting the durability of the dentin adhesive. The purpose of this review is to summarize the progress on the biodegraded mechanism of resin-dentin adhesive interface mediated by MMPs and the application of its antagonists.

[1]
Pashley DH, Tay FR, Yiu C, et al. Collagen degradation by host-derived enzymes during aging[J]. J Dent Res, 2004, 83(3): 216-221.
[2]
Mazzoni A, Pashley DH, Nishitani Y, et al. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives[J]. Biomaterials, 2006, 27(25): 4470-4476.
[3]
Sulkala M, Tervahartiala T, Sorsa T, et al. Matrix metalloproteinase-8(mmp-8)is the major collagenase in human dentin[J]. Arch Oral Biol, 2007, 52(2): 121-127.
[4]
Sulkala M, Larmas M, Sorsa T, et al. The localization of matrix metalloproteinase-20(MMP-20, enamelysin)in mature human teeth[J]. J Dent Res, 2002, 81(9): 603-607.
[5]
Mazzoni A, Pashley DH, Tay FR, et al. Immunohistochemical identification of MMP-2 and MMP-9 in human dentin: correlative FEI-SEM/TEM analysis[J]. J Biomed Mater Res A, 2009, 88(3): 697-703.
[6]
Boukpessi T, Menashi S, Camoin L, et al. The effect of stromelysin-1(MMP-3)on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins[J]. Biomaterials, 2008, 29(33): 4367-4373.
[7]
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry[J]. Circ Res, 2003, 92(8): 827-839.
[8]
Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks[J]. Dent Mater, 2006, 22(3): 211-222.
[9]
Zhang SC, Kern M. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives[J]. Int J Oral Sci, 2009, 1(4): 163-176.
[10]
胡琳,肖玉鸿,黄鹂,等.酸蚀时间对牙本质Ⅰ型胶原降解的影响[J].中华口腔医学杂志,2011,46(2): 84-88.
[11]
Tay FR, Pashley DH, Loushine RJ, et al. Self-etching adhesives increase collagenolytic activity in radicular dentin[J]. J Endod, 2006, 32(9): 862-868.
[12]
Spencer P, Wang Y. Adhesive phase separation at the dentin interface under wet bonding conditions[J]. J Biomed Mater Res, 2002, 62(3): 447-456.
[13]
Kostoryz EL, Dharmala K, Ye Q, et al. Enzymatic biodegradation of HEMA/bisGMA adhesives formulated with different water content[J]. J Biomed Mater Res B Appl Biomater, 2009, 88(2): 394-401.
[14]
Kim J, Uchiyama T, Carrilho M, et al. Chlorhexidine binding to mineralized versus demineralized dentin powder[J]. Dent Mater, 2010, 26(8): 771-778.
[15]
Carrilho MR, Carvalho RM, Sousa EN, et al. Substantivity of chlorhexidine to human dentin[J]. Dent Mater, 2010, 26(8): 779-785.
[16]
Carrilho MR, Geraldeli S, Tay F, et al. In vivo preservation of the hybrid layer by chlorhexidine[J]. J Dent Res, 2007, 86(6): 529-533.
[17]
Ricci HA, Sanabe ME, de Souza Costa CA, et al. Chlorhexidine increases the longevity of in vivo resin-dentin bonds[J]. Eur J Oral Sci, 2010, 118(4): 411-416.
[18]
Thompson JM, Agee K, Sidow SJ, et al. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetet-raacetic acid[J]. J Endod, 2012, 38(1): 62-65.
[19]
Tezvergil-Mutluay A, Agee KA, Uchiyama T, et al. The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs[J]. J Dent Res, 2011, 90(4): 535-540.
[20]
Donmez N, Belli S, Pashley DH, et al. Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives[J]. J Dent Res, 2005, 84(4): 355-359.
[21]
Tezvergil-Mutluay A, Mutluay MM, Gu LS, et al. The anti-MMP activity of benzalkonium chloride[J]. J Dent, 2011, 39(1): 57-64.
[22]
Nassar M, Hiraishi N, Shimokawa H, et al. The inhibition effect of non-protein thiols on dentinal matrix metalloproteinase activity and HEMA cytotoxicity[J]. J Dent, 2014, 42(3): 312-318.
[23]
Tjäderhane L, Mehtälä P, Scaffa P, et al. The effect of dimethyl sulfoxide(DMSO)on dentin bonding and nanoleakage of etch-and-rinse adhesives[J]. Dent Mater, 2013, 29(10): 1055-1062.
[24]
Toledano M, Sauro S, Cabello I, et al. A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface[J]. Dent Mater, 2013, 29(8): e142-e152.
[25]
Stanislawczuk R, Costa JA, Polli LG, et al. Effect of tetracycline on the bond performance of etch-and-rinse adhesives to dentin[J]. Braz Oral Res, 2011, 25(5): 459-465.
[26]
Breschi L, Martin P, Mazzoni A, et al. Use of a specific MMP-inhibitor(galardin)for preservation of hybrid layer[J]. Dent Mater, 2010, 26(6): 571-578.
[27]
Pashley DH, Tay FR, Carvalho RM, et al. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer[J]. Am J Dent, 2007, 20(1): 7-20.
[28]
Nishitani Y, Yoshiyama M, Donnelly AM, et al. Effects of resin hydrophilicity on dentin bond strength[J]. J Dent Res, 2006, 85(11): 1016-1021.
[29]
Kim J, Gu L, Breschi L, et al. Implication of ethanol wet-bonding in hybrid layer remineralization[J]. J Dent Res, 2010, 89(6): 575-580.
[30]
Sadek FT, Mazzoni A, Breschi L, et al. Six-month evaluation of adhesives interface created by a hydrophobic adhesive to acid-etched ethanol-wet bonded dentine with simplified dehydration protocols[J]. J Dent, 2010, 38(4): 276-283.
[31]
Liu Y, Tjäderhane L, Breschi L, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation[J]. J Dent Res, 2011, 90(8): 953-968.
[32]
Tay FR, Pashley DH. Biomimetic remineralization of resin-bonded acid-etched dentin[J]. J Dent Res, 2009, 88(8): 719-724.
[33]
Liu Y, Dusevich V, Wang Y. Proanthocyanidins rapidly stabilize the demineralized dentin layer[J]. J Dent Res, 2013, 92(8): 746-752.
[34]
Liu Y, Chen M, Yao X, et al. Enhancement in dentin collagen′s biological stability after proanthocyanidins treatment in clinically relevant time periods[J]. Dent Mater, 2013, 29(4): 485-492.
[35]
Epasinghe DJ, Yiu CK, Burrow MF, et al. The inhibitory effect of proanthocyanidin on soluble and collagen-bound proteases[J]. J Dent, 2013, 41(9): 832-839.
[36]
Mazzoni A, Apolonio FM, Saboia VP, et al. Carbodiimide inactivation of MMPs and effect on dentin bonding[J]. J Dent Res, 2014, 93(3): 263-268.
[37]
Fawzy A, Nitisusanta L, Iqbal K, et al. Characterization of riboflavin-modified dentin collagen matrix[J]. J Dent Res, 2012, 91(11): 1049-1054.
[1] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J/OL]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[2] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[3] 曾德荣, 马琳, 李星瀚, 胡伟涛, 刘琦, 邓永强. 多聚ADP核糖聚合酶1在口腔鳞状细胞癌精准诊疗中的作用机制及转化价值[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 269-275.
[4] 李星月, 董伟, 徐永波, 张文法, 胡晓璇, 钟玉绪, 褚海波. 浅表血栓性静脉炎管壁基质金属蛋白酶及其抑制剂表达研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 338-343.
[5] 张琳成, 詹启帆, 赵禹迪, 邵初晓, 凌孙彬, 徐骁. 肝癌肝移植术后免疫抑制方案的网状荟萃分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 362-371.
[6] 井发红, 李丽娜, 高婷, 高艳梅, 杨楠, 李卓, 慕玉东. 肺癌立体定向放疗血清SAP 和MMPs 表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 707-713.
[7] 梁丽斯, 李洁, 贺帅, 来艳君, 刘铭, 张琳. MMP-9、MMP-2 及TLR4、HE4对非小细胞肺癌早期诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 756-761.
[8] 赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.
[9] 陆思楠, 苏同荣, 张启逸. 索凡替尼转化治疗胰腺神经内分泌肿瘤肝转移一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 526-530.
[10] 张涛, 汪建茹, 赵瑾超, 葛程, 钱竹韵, 陶勇. 基质金属蛋白酶9即时检测对干眼诊断效能分析的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(01): 14-19.
[11] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[12] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[13] 乔晓红, 薛晓峰, 查振刚, 蔡若莲, 牛建军, 任立新, 杨慧峰, 李雪梅, 郭秀珍. 骨关节炎患者血清中Vaspin的表达及其与关节病变严重程度的关系[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 152-158.
[14] 宋建波, 韩俊伟, 周敏, 温红萍. 血管内皮生长因子受体酪氨酸激酶抑制剂致蛋白尿风险的荟萃分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1297-1303.
[15] 刘聪辉, 何浩然, 黄一诺, 张凤, 王凡月, 郝翰. 膳食铜补充对大鼠心肌梗死后心肌基质金属蛋白酶2表达水平及血流动力学的影响[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 166-172.
阅读次数
全文


摘要