切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (04) : 333 -336. doi: 10.3877/cma.j.issn.1674-1366.2015.04.017

所属专题: 口腔医学 文献

综述

基质金属蛋白酶介导牙本质粘接界面的生物降解及其拮抗剂的研究进展
孙素1, 肖玉鸿1,()   
  1. 1. 650032 昆明,成都军区昆明总医院口腔科,昆明医科大学教学医院
  • 收稿日期:2015-03-04 出版日期:2015-08-01
  • 通信作者: 肖玉鸿
  • 基金资助:
    国家自然科学基金(81460107)

The progress on the biodegradation of resin-dentin adhesive interface mediated by the matrix metalloproteinases and its antagonists

Su Sun1, Yuhong Xiao1,()   

  1. 1. Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming 650032, China
  • Received:2015-03-04 Published:2015-08-01
  • Corresponding author: Yuhong Xiao
  • About author:
    Corresponding author: Xiao Yuhong, Email: , Tel: 0871-64774939
引用本文:

孙素, 肖玉鸿. 基质金属蛋白酶介导牙本质粘接界面的生物降解及其拮抗剂的研究进展[J]. 中华口腔医学研究杂志(电子版), 2015, 09(04): 333-336.

Su Sun, Yuhong Xiao. The progress on the biodegradation of resin-dentin adhesive interface mediated by the matrix metalloproteinases and its antagonists[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(04): 333-336.

随着牙本质粘接技术的不断发展,粘接效果也得到很大提高,但树脂牙本质粘接界面仍然受到诸多因素的影响。有研究表明,牙本质粘接剂中的亲水性和酸性单体可使粘接混合层具有较强的吸水性,容易引起聚合物的水解。同时,混合层内的不稳定聚合物可使胶原纤维受到侵蚀从而变得脆弱,容易被宿主源性的基质金属蛋白酶(MMP)降解。因此,MMP在降解Ⅰ型胶原的过程中发挥着重要作用,从而影响牙本质的粘接耐久性。本文就MMP介导的树脂牙本质粘接界面生物降解机理及其拮抗剂的应用做一简要综述。

With the continuous development of dentin adhesive technology, adhesive effect has also been greatly improved, but the adhesive interface is still affected by many factors. The hydrophilic and acidic monomers of current dentin adhesives have made hybrid layer highly prone to water sorption. This, in turn, causes polymer degradation. These unstable polymers inside the hybrid layer may result in denuded collagen fibers, which become vulnerable to mechanical and hydrolytical fatigue, as well as degradation by host-derived the matrix metalloproteinases(MMPs)with collagenolytic activity. Therefore, MMPs have a crucial role in the degradation of typeⅠcollagen, thus affecting the durability of the dentin adhesive. The purpose of this review is to summarize the progress on the biodegraded mechanism of resin-dentin adhesive interface mediated by MMPs and the application of its antagonists.

[1]
Pashley DH, Tay FR, Yiu C, et al. Collagen degradation by host-derived enzymes during aging[J]. J Dent Res, 2004, 83(3): 216-221.
[2]
Mazzoni A, Pashley DH, Nishitani Y, et al. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives[J]. Biomaterials, 2006, 27(25): 4470-4476.
[3]
Sulkala M, Tervahartiala T, Sorsa T, et al. Matrix metalloproteinase-8(mmp-8)is the major collagenase in human dentin[J]. Arch Oral Biol, 2007, 52(2): 121-127.
[4]
Sulkala M, Larmas M, Sorsa T, et al. The localization of matrix metalloproteinase-20(MMP-20, enamelysin)in mature human teeth[J]. J Dent Res, 2002, 81(9): 603-607.
[5]
Mazzoni A, Pashley DH, Tay FR, et al. Immunohistochemical identification of MMP-2 and MMP-9 in human dentin: correlative FEI-SEM/TEM analysis[J]. J Biomed Mater Res A, 2009, 88(3): 697-703.
[6]
Boukpessi T, Menashi S, Camoin L, et al. The effect of stromelysin-1(MMP-3)on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins[J]. Biomaterials, 2008, 29(33): 4367-4373.
[7]
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry[J]. Circ Res, 2003, 92(8): 827-839.
[8]
Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks[J]. Dent Mater, 2006, 22(3): 211-222.
[9]
Zhang SC, Kern M. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives[J]. Int J Oral Sci, 2009, 1(4): 163-176.
[10]
胡琳,肖玉鸿,黄鹂,等.酸蚀时间对牙本质Ⅰ型胶原降解的影响[J].中华口腔医学杂志,2011,46(2): 84-88.
[11]
Tay FR, Pashley DH, Loushine RJ, et al. Self-etching adhesives increase collagenolytic activity in radicular dentin[J]. J Endod, 2006, 32(9): 862-868.
[12]
Spencer P, Wang Y. Adhesive phase separation at the dentin interface under wet bonding conditions[J]. J Biomed Mater Res, 2002, 62(3): 447-456.
[13]
Kostoryz EL, Dharmala K, Ye Q, et al. Enzymatic biodegradation of HEMA/bisGMA adhesives formulated with different water content[J]. J Biomed Mater Res B Appl Biomater, 2009, 88(2): 394-401.
[14]
Kim J, Uchiyama T, Carrilho M, et al. Chlorhexidine binding to mineralized versus demineralized dentin powder[J]. Dent Mater, 2010, 26(8): 771-778.
[15]
Carrilho MR, Carvalho RM, Sousa EN, et al. Substantivity of chlorhexidine to human dentin[J]. Dent Mater, 2010, 26(8): 779-785.
[16]
Carrilho MR, Geraldeli S, Tay F, et al. In vivo preservation of the hybrid layer by chlorhexidine[J]. J Dent Res, 2007, 86(6): 529-533.
[17]
Ricci HA, Sanabe ME, de Souza Costa CA, et al. Chlorhexidine increases the longevity of in vivo resin-dentin bonds[J]. Eur J Oral Sci, 2010, 118(4): 411-416.
[18]
Thompson JM, Agee K, Sidow SJ, et al. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetet-raacetic acid[J]. J Endod, 2012, 38(1): 62-65.
[19]
Tezvergil-Mutluay A, Agee KA, Uchiyama T, et al. The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs[J]. J Dent Res, 2011, 90(4): 535-540.
[20]
Donmez N, Belli S, Pashley DH, et al. Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives[J]. J Dent Res, 2005, 84(4): 355-359.
[21]
Tezvergil-Mutluay A, Mutluay MM, Gu LS, et al. The anti-MMP activity of benzalkonium chloride[J]. J Dent, 2011, 39(1): 57-64.
[22]
Nassar M, Hiraishi N, Shimokawa H, et al. The inhibition effect of non-protein thiols on dentinal matrix metalloproteinase activity and HEMA cytotoxicity[J]. J Dent, 2014, 42(3): 312-318.
[23]
Tjäderhane L, Mehtälä P, Scaffa P, et al. The effect of dimethyl sulfoxide(DMSO)on dentin bonding and nanoleakage of etch-and-rinse adhesives[J]. Dent Mater, 2013, 29(10): 1055-1062.
[24]
Toledano M, Sauro S, Cabello I, et al. A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface[J]. Dent Mater, 2013, 29(8): e142-e152.
[25]
Stanislawczuk R, Costa JA, Polli LG, et al. Effect of tetracycline on the bond performance of etch-and-rinse adhesives to dentin[J]. Braz Oral Res, 2011, 25(5): 459-465.
[26]
Breschi L, Martin P, Mazzoni A, et al. Use of a specific MMP-inhibitor(galardin)for preservation of hybrid layer[J]. Dent Mater, 2010, 26(6): 571-578.
[27]
Pashley DH, Tay FR, Carvalho RM, et al. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer[J]. Am J Dent, 2007, 20(1): 7-20.
[28]
Nishitani Y, Yoshiyama M, Donnelly AM, et al. Effects of resin hydrophilicity on dentin bond strength[J]. J Dent Res, 2006, 85(11): 1016-1021.
[29]
Kim J, Gu L, Breschi L, et al. Implication of ethanol wet-bonding in hybrid layer remineralization[J]. J Dent Res, 2010, 89(6): 575-580.
[30]
Sadek FT, Mazzoni A, Breschi L, et al. Six-month evaluation of adhesives interface created by a hydrophobic adhesive to acid-etched ethanol-wet bonded dentine with simplified dehydration protocols[J]. J Dent, 2010, 38(4): 276-283.
[31]
Liu Y, Tjäderhane L, Breschi L, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation[J]. J Dent Res, 2011, 90(8): 953-968.
[32]
Tay FR, Pashley DH. Biomimetic remineralization of resin-bonded acid-etched dentin[J]. J Dent Res, 2009, 88(8): 719-724.
[33]
Liu Y, Dusevich V, Wang Y. Proanthocyanidins rapidly stabilize the demineralized dentin layer[J]. J Dent Res, 2013, 92(8): 746-752.
[34]
Liu Y, Chen M, Yao X, et al. Enhancement in dentin collagen′s biological stability after proanthocyanidins treatment in clinically relevant time periods[J]. Dent Mater, 2013, 29(4): 485-492.
[35]
Epasinghe DJ, Yiu CK, Burrow MF, et al. The inhibitory effect of proanthocyanidin on soluble and collagen-bound proteases[J]. J Dent, 2013, 41(9): 832-839.
[36]
Mazzoni A, Apolonio FM, Saboia VP, et al. Carbodiimide inactivation of MMPs and effect on dentin bonding[J]. J Dent Res, 2014, 93(3): 263-268.
[37]
Fawzy A, Nitisusanta L, Iqbal K, et al. Characterization of riboflavin-modified dentin collagen matrix[J]. J Dent Res, 2012, 91(11): 1049-1054.
[1] 王青青, 耿翠芝, 苏晓雨, 彭玉晓, 秦明祎, 刘风侠. 乳腺癌芳香化酶抑制剂相关肌肉骨骼不良反应的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 243-249.
[2] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[3] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[4] 任琼, 吴东燕, 李中花, 石晶, 张静, 耿丽伟. 血清降钙素原、基质金属蛋白酶-9和可溶性细胞间黏附分子-1联合检测对绒毛膜羊膜炎的诊断价值[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 194-199.
[5] 刘立, 陈诚, 李新科, 刘凯, 屠昌明. 血清IL-6、hs-CRP、MMP-9联合检测在腹股沟疝无张力修补术预后评价中的价值分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 405-409.
[6] 李义亮, 买买提·依斯热依力, 王永康, 王志, 赛甫丁·艾比布拉, 李赞林, 克力木·阿不都热依木. 聚丙烯和生物补片对腹壁疝大鼠腹横筋膜组织氧化应激、MMPs及TIMPs的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 125-129.
[7] 李咏生, 孙建国, 李梦侠, 重庆肺癌精准治疗协作组(CPLOG). 第三代EGFR-TKI耐药后诊疗策略专家共识[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 145-155.
[8] 陈俞坊, 王康, 吴文昊, 张厚丽, 周向东. EGFR敏感突变ⅠA期浸润性肺腺癌术后辅助靶向治疗预后分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 776-781.
[9] 甘开梅, 黄剑. 肺癌干细胞对EGFR-TKI耐药影响的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 36-44.
[10] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[11] 佘重阳, 卢弘. Janus激酶抑制剂在幼年特发性关节炎相关葡萄膜炎治疗中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 104-108.
[12] 刁正文, 徐愈畅, 张杰, 张华军, 李秋霖, 陈卉. β-七叶皂苷钠联合甘油果糖治疗脑出血的临床效果分析[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 32-37.
[13] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[14] 黄晴, 赵瑞珩, 钱惠英. PCI-24781诱导SKOV-3细胞凋亡及相关机制的研究[J]. 中华临床医师杂志(电子版), 2022, 16(08): 775-781.
[15] 李娜, 李军, 郭李平, 王海雄. 血管紧张素受体脑啡肽酶抑制剂在心律失常患者中的应用[J]. 中华心脏与心律电子杂志, 2023, 11(01): 39-44.
阅读次数
全文


摘要