切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (04) : 337 -340. doi: 10.3877/cma.j.issn.1674-1366.2015.04.018

所属专题: 口腔医学 文献

综述

往复式运动镍钛器械的研究进展
杨雨虹1, 唐倩1,()   
  1. 1. 510630 广州,中山大学附属第三医院口腔科
  • 收稿日期:2015-05-14 出版日期:2015-08-01
  • 通信作者: 唐倩

Research progress of reciprocation

Yuhong Yang1, Qian Tang1,()   

  1. 1. Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2015-05-14 Published:2015-08-01
  • Corresponding author: Qian Tang
  • About author:
    Corresponding author: Tang Qian, Email: , Tel: 020-85253036
引用本文:

杨雨虹, 唐倩. 往复式运动镍钛器械的研究进展[J]. 中华口腔医学研究杂志(电子版), 2015, 09(04): 337-340.

Yuhong Yang, Qian Tang. Research progress of reciprocation[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(04): 337-340.

预防镍钛器械在根管预备过程中出现因周期性疲劳及扭转疲劳导致的器械分离、改良镍钛器械的根管成形能力及减少在预备过程中出现的根管偏移等,对于提高根管治疗的成功率及防止医源性并发症的发生有重要意义。近年来,镍钛器械的往复式运动被认为可有效提高器械使用的安全性,延长其使用寿命。这种新型的运动模式较传统的持续旋转有哪些优势及缺陷引起了学者的广泛关注。本文就往复式运动的研究进展作一综述。

The prevention of the separation of NiTi instruments in root canal preparation process due to cyclic fatigue and torsional stress and the promotion of the instuments′ shaping abilitity are significant to improve the quality of root canal treatment and to reduce iatrogenic complications. The reciprocating motion of NiTi instruments proposed in recent years has been proved to improve the safety of instrumentation and to prolong the files′ lifespan. The advantages and shortcomings of reciprocation compared with the traditional continuous rotation motion have attracted the wide attention of scholars. In this paper, the recent research progresses in reciprocation are reviewed.

[1]
Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files[J]. J Endod, 1988, 14(7): 346-351.
[2]
Thompson SA. An overview of nickel-titanium alloys used in dentistry[J]. Int Endod J, 2000, 33(4): 297-310.
[3]
Hülsmann M, Herbst U, Schäfers F. Comparative study of root-canal preparation using Lightspeed and Quantec SC rotary NiTi instruments[J]. Int Endod J, 2003, 36(11): 748-756.
[4]
Wycoff RC, Berzins DW. An in vitro comparison of torsional stress properties of three different rotary nickel-titanium files with a similar cross-sectional design[J]. J Endod, 2012, 38(8): 1118-1120.
[5]
You SY, Bae KS, Baek SH, et al. Lifespan of one nickel-titanium rotary file with reciprocating motion in curved root canals[J]. J Endod, 2010, 36(12): 1991-1994.
[6]
Yared G. Canal preparation using only one Ni-Ti rotary instrument: preliminary observations[J]. Int Endod J, 2008, 41(4): 339-344.
[7]
Roane JB, Sabala CL, Duncanson MG Jr. The "balanced force" concept for instrumentation of curved canals[J]. J Endod, 1985, 11(5): 203-211.
[8]
范兵,樊明文,乐进秋.扩大弯曲根管的平衡力法及其研究进展[J].国外医学(口腔医学分册),1994,21(3): 149-153.
[9]
徐琼,樊明文,范兵.平衡力法预备弯曲根管的临床评价[J].牙体牙髓牙周病学杂志,2002,12(10): 550-553.
[10]
Gambarini G, Gergi R, Naaman A, et al. Cyclic fatigue analysis of twisted file rotary NiTi instruments used in reciprocating motion[J]. Int Endod J, 2012, 45(9): 802-806.
[11]
de Frota MF, Espir CG, Berbert FL, et al. Comparison of cyclic fatigue and torsional resistance in reciprocating single-file systems and continuous rotary instrumentation systems[J]. J Oral Sci, 2014, 56(4): 269-275.
[12]
Gavini G, Caldeira CL, Akisue E, et al. Resistance to flexural fatigue of Reciproc R25 files under continuous rotation and reciprocating movement[J]. J Endod, 2012, 38(5): 684-687.
[13]
De-Deus G, Moreira EJ, Lopes HP, et al. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement[J]. Int Endod J, 2010, 43(12): 1063-1068.
[14]
Peters OA. Current challenges and concepts in the preparation of root canal systems: a review[J]. J Endod, 2004, 30(8): 559-567.
[15]
Wu MK, Fan B, Wesselink PR, et al. Leakage along apical root fillings in curved root canals. Part Ⅰ: effects of apical transportation on seal of root fillings[J]. J Endod, 2000, 26(4): 210-216.
[16]
Burklein S, Poschmann T, Schäfer E. Shaping ability of different nickel-titanium systems in simulated S-shaped canals with and without glide path[J]. J Endod, 2014, 40(8): 1231-1234.
[17]
Plotino G, Grande NM, Porciani PF. Deformation and fracture incidence of Reciproc instruments: a clinical evaluation[J]. Int Endod J, 2015, 48(2): 199-205.
[18]
Hwang YH, Bae KS, Baek SH, et al. Shaping ability of the conventional nickel-titanium and reciprocating nickel-titanium file systems: a comparative study using micro-computed tomography[J]. J Endod, 2014, 40(8): 1186-1189.
[19]
邵彤菲,侯晓玫,侯本祥.往复运动镍钛锉根管预备成形能力的体外研究[J].华西口腔医学杂志,2014,32(6): 606-610.
[20]
Marzouk AM, Ghoneim AG. Computed tomographic evaluation of canal shape instrumented by different kinematics rotary nickel-titanium systems[J]. J Endod, 2015, 39(7): 906-909.
[21]
Wu XC, Zhu YQ. Geometric analysis of root canals prepared by single twisted file in three different operation modes[J]. Eur J Dent, 2014, 8(4): 515-520.
[22]
Saleh AM, Vakili Gilani P, Tavanafar S, et al. Shaping ability of 4 different single-file systems in simulated S-shaped canals[J]. J Endod, 2015, 41(4): 548-552.
[23]
葛久禹.镍钛根管预备器械[J].中国实用口腔科杂志,2014,7(1): 2-9.
[24]
Reddy SA, Hicks L. Apical extrusion of debris using two hand and two rotary instrumentation techniques[J]. J Endod, 1998, 24(3): 180-183.
[25]
Ferraz CC, Gomes NV, Gomes BP, et al. Apical ex-trusion of debris and irrigants using two hand and three engine-driven instrumentation tech-niques[J]. Int Endo J, 2001, 34(5): 354-358.
[26]
Tanalp J, Kaptan F, Sert S, et al. Quantitative evaluation of the amount of apically extruded debris using 3 different rotary instrumentation systems[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101(2): 250-257.
[27]
Beeson TJ, Hartwell GR, Thornton JD, et al. Comparison of debris extruded apically in straight canals: conventional filing versus profile .04 Taper series 29[J]. J Endod, 1998, 24(1): 18-22.
[28]
Kirchhoff AL, Fariniuk LF, Mello I. Apical extrusion of debris in flat-oval root canals after using different instrumentation systems[J]. J Endod, 2015, 41(2): 237-241.
[29]
Ozsu D, Karatas E, Arslan H, et al. Quantitative evaluation of apically extruded debris during root canal instrumentation with ProTaper Universal, ProTaper Next, WaveOne, and self-adjusting file systems[J]. Eur J Dent, 2014, 8(4): 504-508.
[30]
Nayak G, Singh I, Shetty S, et al. Evaluation of apical extrusion of debris and irrigant using two new reciprocating and one continuous rotation single file systems[J]. J Dent(Tehran), 2014, 11(3): 302-309.
[31]
Bürklein S, Schäfer E. Apically extruded debris with reciprocating single-file and full-sequence rotary instrumentation systems[J]. J Endod, 2012, 38(6): 850-852.
[32]
Nekoofar MH, Sheykhrezae MS, Meraji N, et al. Comparison of the effect of root canal preparation by using WaveOne and ProTaper on postoperative pain: a randomized clinical trial[J]. J Endod, 2015, 41(5): 575-578.
[33]
Yoldas O, Yilmaz S, Atakan G, et al. Dentinal microcrack formation during root canal preparations by different NiTi rotary instruments and the self-adjusting file[J]. J Endod, 2012, 38(2): 232-235.
[34]
Wilcox R, Roskelley C, Sutton T. The relationship of root canal enlargement to finger-spreader induced vertical root fracture[J]. J Endod, 1997, 23(8): 533-534.
[35]
Tamse A, Fuss Z, Kaplavi J, et al. An evaluation of endodontically treated vertically fractured teeth[J]. J Endod, 1999, 25(7): 506-508.
[36]
Karata E, Arslan H, Alsancak M, et al. Incidence of Dentinal Cracks after Root Canal Preparation with Twisted File Adaptive Instruments Using Different Kinematics[J]. J Endod, 2015, 41(7): 1130-1133.
[37]
Liu R, Hou BX, Wesselink PR, et al. The incidence of root microcracks caused by 3 different single-file systems versus the ProTaper system[J]. J Endod, 2013, 39(8): 1054-1056.
[38]
Ashwinkumar V, Krithikadatta J, Surendran S, et al. Effect of reciprocating file motion on microcrack formation in root canals: an SEM study[J]. Int Endod J, 2014, 47(7): 622-627.
[39]
Bürklein S, Tsotsis P, Schäfer E. Incidence of dentinal defects after root canal preparation: reciprocating versus rotary instrumentation[J]. J Endod, 2013, 39(4): 501-504.
[40]
De-Deus G, Silva EJ, Marins J, et al. Lack of causal relationship between dentinal microcracks and root canal preparation with reciprocation systems[J]. J Endod, 2014, 40(9): 1447-1450.
[41]
De-Deus G, Belladonna FG, Spuza EM, et al. Micro-computed Tomographic Assessment on the Effect of ProTaper Next and Twisted File Adaptive Systems on Dentinal Cracks[J]. J Endod, 2015, 41(7): 1116-1119.
[42]
Haapasalo M, Shen Y. Evolution of nickel-titanium instruments: from past to future[J]. Endodontic Topics, 2013, 29(1): 3-17.
[43]
Fidler A. Kinematics of 2 reciprocating endodontic motors: the difference between actual and set values[J]. J Endod, 2014, 40(7): 990-994.
[44]
卡瓦集团.机用根管预备工具TFA-daptive系统[EB/OL]. 2015-5-14.

URL    
[45]
Bane K, Faye B, Sarr M, et al. Root canal shaping by single-file systems and rotary instruments: a laboratory study[J]. Iranian Endodontic Journal, 2015, 10(2): 135-139.
[46]
Sonntag D, Peters OA. Effect of prion decontamination protocols on nickel-titanium rotary surfaces[J]. J Endod, 2007, 33(4): 442-446.
[47]
Higuera O, Plotino G, Tocci L, et al. Cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments in artificial canals[J]. J Endod, 2015, 41(6): 913-915.
[48]
Gergi R, Osta N, Bourbouze G, et al. Effects of three nickel titanium instrument systems on root canal geometry assessed by micro-computed tomography[J]. Int Endod J, 2015, 48(2): 162-170.
[49]
Kirchhoff AL, Fariniuk LF, Mello I, et al. Apical extrusion of debris in flat-oval root canals after using different instrumentation systems[J]. J Endod, 2015, 41(2): 237-241.
[50]
Arslan H, Doğanay E, Alsancak M, et al. Comparison of apically extruded debris after root canal instrumentation using Reciproc® instruments with various kinematics[J]. Int Endod J, 2015, doi: 10.1111/iej.12449.
[1] 王祥柱. 根管治疗器械分离的临床管理[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 153-161.
阅读次数
全文


摘要