切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (01) : 44 -49. doi: 10.3877/cma.j.issn.1674-1366.2015.01.007

所属专题: 文献

基础研究

两种消毒方式对壳聚糖水凝胶温敏性能及模型蛋白体外缓释性能的影响
林思思1, 张新春1, 王安训2, 张灿1, 王焱1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2. 510080 广州,中山大学附属第一医院口腔科
  • 收稿日期:2014-12-31 出版日期:2015-02-01
  • 通信作者: 王焱
  • 基金资助:
    国家自然科学基金(51372087); 广东省自然科学基金(S2013010016060)

Effects of two sterilization methods on the thermo-gelation behavior and in vitro protein release characteristics of chitosan hydrogel

Sisi Lin1, Xinchun Zhang1, Anxun Wang2, Can Zhang1, Yan Wang1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    2. Department of Stomatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
  • Received:2014-12-31 Published:2015-02-01
  • Corresponding author: Yan Wang
  • About author:
    Corresponding author: Wang Yan, Email: , Tel: 020-83802805
引用本文:

林思思, 张新春, 王安训, 张灿, 王焱. 两种消毒方式对壳聚糖水凝胶温敏性能及模型蛋白体外缓释性能的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(01): 44-49.

Sisi Lin, Xinchun Zhang, Anxun Wang, Can Zhang, Yan Wang. Effects of two sterilization methods on the thermo-gelation behavior and in vitro protein release characteristics of chitosan hydrogel[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(01): 44-49.

目的

探索两种消毒方式对壳聚糖水凝胶温敏性能及缓释性能的影响,为壳聚糖水凝胶临床应用前消毒方式的选择提供依据。

方法

在制备壳聚糖温敏水凝胶前,采用两种方式进行消毒处理。(1)传统组:高压蒸汽消毒壳聚糖-醋酸溶液;(2)改良组:高压蒸汽消毒壳聚糖粉末。检测两组凝胶的成胶时间、旋转粘度;扫描电镜观察表面及截面形貌;傅立叶红外光谱检测特征性吸收峰;采用牛血清白蛋白(BSA)作为模型蛋白,观测体外缓释性能;SDS-PAGE检测缓释后的蛋白完整性。结果采用两独立样本的t检验进行统计。

结果

37℃时,传统组成胶时间明显长于改良组(t= 61.677,P= 0.000);改良组的旋转粘度在37℃时达15 000 mPa.s,传统组37℃时粘度为1560 mPa.s,40℃时上升至11 500 mPa.s;两组凝胶表面致密完整,截面均呈三维立体网状多孔结构,传统组孔隙大于改良组;两实验组与未消毒壳聚糖的吸收光谱基本一致;两组均有良好的缓释性能,改良组缓释性能更佳(t= 61.415,P= 0.000),且释放出的模型蛋白分子结构完整。

结论

采用改良消毒方式的壳聚糖水凝胶成胶时间更短,温敏性能更佳,缓释性能良好,且与传统组一样能保持缓释蛋白结构完整性。

Objective

To compare the effects of two different sterilization methods on the thermo-gelation behavior and protein release characteristics of chitosan hydrogel in vitro.

Methods

Chitosan thermo-sensitive hydrogel was routinely fabricated and sterilized by two methods: (1) conventional group: steam sterilization on chitosan solution; (2) modified group: steam sterilization on chitosan powder. Gelation time was recorded and the viscosity was measured using a viscometer. The topography and the cross section of the chitosan hydrogel were observed by a scanning electron microscopy (SEM) . Fourier transform infrared (FTIR) spectra were obtained with a Fourier Transform IR Spectrophotometer. In vitro protein release characteristics were observed using bovine serum albumin (BSA) as a model protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to determine the structural integrity of model protein.

Results

At 37℃, the gelation time of modified group was significantly longer than that of conventional group (t=61.677, P= 0.000) . The viscosity of modified group was 15000 mPa.s at 37℃, while the viscosity of conventional group was 1560 mPa.s at 37℃ and increased to 11 500 mPa.s at 40℃. SEM observation showed three-dimensional mesh porous structures in both groups. Mean pore size of conventional group was larger than those of modified group. Both groups presented great controlled-release of the model protein, modified group was better than conventional group (t= 61.415, P= 0.000) . There is no significant difference on the FTIR spectra of the two sterilized groups. The result of SDS-PAGE indicated that the protein released from both groups remained structural integrity.

Conclusions

Autoclaving chitosan powder had shorter gelation time, better thermo-gelation behavior and could prolong the release of model protein in vitro than autoclaving chitosan/β-GP solution.

表1 两种消毒方式壳聚糖凝胶理化性能对比
图1 不同消毒方法所获的壳聚糖水凝胶的试管倒置图
图2 两组凝胶旋转粘度对比
图3 两组凝胶冻干后的扫描电镜图
图4 两种消毒方式凝胶傅立叶变换红外光谱图
图5 模型药物BSA在两组壳聚糖温敏凝胶中的体外缓释曲线
图6 SDS-PAGE凝胶考马斯亮蓝染色图
[1]
Chenite A, Chaput C, Wang D,et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ[J]. Biomaterials,2000,21(21):2155-2161.
[2]
Shin SY, Park HN, Kim KH,et al. Biological evaluation of chitosan nanofiber membrane for guided bone regeneration[J]. J Periodontol,2005,76(10):1778-1784.
[3]
Kawai T, Yamada T, Yasukawa A,et al. Biological fixation of fibrous materials to bone using chitin/chitosan as a bone formation accelerator[J]. J Biomed Mater Res B Appl Biomater,2009,88(1):264-270.
[4]
Klokkevold PR, Vandemark L, Kenney EB,et al. Osteogenesis enhanced by chitosan(poly-N-acetyl glucosaminoglycan)in vitro[J]. J Periodontol,1996,67(11):1170-1175.
[5]
Lee YM, Park YJ, Lee SJ,et al. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges[J]. J Periodontol,2000,71(3):410-417.
[6]
Jarry C, Leroux JC, Haeck J,et al. Irradiating or autoclaving chitosan/polyol solutions:effect on thermogelling chitosan-beta-glycerophosphate systems[J]. Chem Pharm Bull,2002,50(10):1335-1340.
[7]
Yang YM, Zhao YH, Liu XH,et al. The effect of different sterilization procedures on chitosan dried powder[J]. J Appl Polym Sci,2007,104(3):1968-1972.
[8]
Canter HI, Vargel I, Korkusuz P,et al. Effect of use of slow release of bone morphogenetic protein-2 and transforming growth factor-Beta-2 in a chitosan gel matrix on cranial bone graft survival in experimental cranial critical size defect model[J]. Ann Plast Surg,2010,64(3):342-350.
[9]
Bae IH, Jeong BC, Kook MS,et al. Evaluation of a thiolated chitosan scaffold for local delivery of BMP-2 for osteogenic differentiation and ectopic bone formation[J]. Biomed Res Int,2013:878930.
[10]
Kim SE, Park JH, Cho YW,et al. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1:implications for cartilage tissue engineering[J]. J Control Release,2003,91(3):365-374.
[11]
Marreco PR, da Luz Moreira P, Genari SC,et al. Effects of different sterilization methods on the morphology,mechanical properties,and cytotoxicity of chitosan membranes used as wound dressings[J]. J Biomed Mater Res B Appl Biomater,2004,71(2):268-277.
[12]
Desai KG, Park HJ. Study of gamma-irradiation effects on chitosan microparticles[J]. Drug Deliv,2006,13(1):39-50.
[13]
França R, Mbeh DA, Samani TD,et al. The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan[J]. J Biomed Mater Res B Appl Biomater,2013,101(8):1444-1455.
[14]
Lim LY, Khor E, Koo O. Gamma irradiation of chitosan[J]. J Biomed Mater Res,1998,43(3):282-290.
[15]
Jarry C, Chaput C, Chenite A,et al. Effects of steam sterilization on thermogelling chitosan-based gels[J]. J Biomed Mater Res,2001,58(1):127-135.
[16]
Ruel-Gariépy E, Chenite A, Chaput C,et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs[J]. Int J Pharm,2000,203(1-2):89-98.
[1] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[2] 江伟, 陈小刚, 汪前亮. 骨髓间充质干细胞和丝素蛋白/壳聚糖支架构建组织工程尿液流出道的研究[J]. 中华损伤与修复杂志(电子版), 2021, 16(01): 6-14.
[3] 夏德萌, 王胥人, 王元辰, 熊文韬, 许硕贵, 周潘宇. 含银介孔二氧化硅-壳聚糖复合材料的制备与性能研究[J]. 中华损伤与修复杂志(电子版), 2019, 14(04): 256-262.
[4] 朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.
[5] 黄紫华, 孙秋榕, 陈慧敏, 王若旬, 麦穗. 羧甲基壳聚糖稳定液相矿化前体诱导胶原纤维仿生矿化[J]. 中华口腔医学研究杂志(电子版), 2017, 11(03): 136-141.
[6] 匡铭, 刁竞芳, 彭宝岗, 沈顺利, 王晔, 吴浩, 陈斌. CytoMPS原位疫苗治疗肝癌的抗瘤作用及其免疫效应[J]. 中华普通外科学文献(电子版), 2010, 04(05): 415-419.
[7] 隋曌, 彭凤, 余凯, 严小虎, 李英, 钟琳, 刘晓银. 吸附NT-3的3D打印胶原蛋白/壳聚糖支架改善脊髓损伤后的运动功能[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 331-338.
[8] 吴宏珊, 薛智钧, 索来, 申静. 碳纳米管/壳聚糖复合材料在医学领域应用的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(07): 547-551.
[9] 周长青, 高唱, 彭国光. 长效与标准非麦角类多巴胺受体激动剂治疗帕金森病的Meta分析[J]. 中华临床医师杂志(电子版), 2020, 14(01): 52-61.
[10] 李志霞, 马义鹏, 梁蔚俊, 胡为民. 普拉克索缓释片治疗原发性帕金森病的临床疗效及安全性观察[J]. 中华临床医师杂志(电子版), 2017, 11(19): 2263-2267.
[11] 唐水杉, 曹耿飞, 薛巧云, 张海潇, 任伟新. 药物缓释微球TACE对比传统碘油TACE治疗不可切除肝癌:倾向性评分匹配[J]. 中华介入放射学电子杂志, 2022, 10(01): 39-44.
[12] 罗立宏. 中西医结合治疗老年血管迷走神经性晕厥疗效分析[J]. 中华老年病研究电子杂志, 2018, 05(02): 37-40.
阅读次数
全文


摘要