切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (01) : 37 -43. doi: 10.3877/cma.j.issn.1674-1366.2015.01.006

所属专题: 文献

基础研究

两种喷砂粒度对钯银合金金瓷结合强度的影响
叶剑涛1,(), 李博华2, 李洁银1, 王希乾2, 王璐2, 叶秀华1   
  1. 1. 510120 广州,中山大学孙逸仙纪念医院口腔科
    2. 450000 郑州,河南省人民医院口腔科
  • 收稿日期:2014-11-01 出版日期:2015-02-01
  • 通信作者: 叶剑涛

Effects of two sizes of sandblasting on the metal-ceramic bonding strength of palladium-silver alloy

Jiantao Ye1,(), Bohua Li2, Jieyin Li1, Xiqian Wang2, Lu Wang2, Xiuhua Ye1   

  1. 1. Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
    2. Department of Stomatology, Henan Provincial People′s Hospital, Zhengzhou 450000, China
  • Received:2014-11-01 Published:2015-02-01
  • Corresponding author: Jiantao Ye
  • About author:
    Corresponding author: Ye Jiantao, Email: , Tel: 020-81332579
引用本文:

叶剑涛, 李博华, 李洁银, 王希乾, 王璐, 叶秀华. 两种喷砂粒度对钯银合金金瓷结合强度的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(01): 37-43.

Jiantao Ye, Bohua Li, Jieyin Li, Xiqian Wang, Lu Wang, Xiuhua Ye. Effects of two sizes of sandblasting on the metal-ceramic bonding strength of palladium-silver alloy[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(01): 37-43.

目的

研究上瓷前不同粒度喷砂对钯银合金金瓷结合强度的影响。

方法

采用不同粒度(250、120 μm)的Al2O3在0.3 MPa压力下,以45°角对钯银合金试件表面进行喷砂10 s粗化处理后,对合金表面的粗糙度、表面接触角进行检测。用ISO 9693规定的三点弯曲测试分别测定其金瓷试件的结合强度。两组表面粗糙度、表面接触角以及金瓷结合强度的数据使用独立样本t检验进行统计学分析(α= 0.05)。使用有X线能谱分析的扫描电镜观察试件的显微特征,元素成分。

结果

250 μm喷砂处理后钯银合金金属表面粗糙度2.03 μm,接触角46.02°,与120 μm喷砂处理后的表面粗糙度1.69 μm、接触角63.61°比较,表面更为粗糙,润湿性更好。250 μm组的金瓷结合强度为(51.61 ± 5.91)MPa,120 μm组的金瓷结合强度为(46.62 ± 4.33)MPa,两者间差异有统计学意义(t=2.360,P=0.028)。三点弯曲测试后,所有开裂试件都为混合折裂模式。

结论

钯银合金在0.3 MPa压力下,250 μm较120 μm Al2O3喷砂后能获得较高的金瓷结合强度。

Objective

To investigate the effect of size of sandblasting on metal-ceramic bonding strength of Pd-Ag alloy.

Methods

The surface roughness (Ra) and contact angle of Pd-Ag alloy surface were evaluated after using the different sizes of Al2O3 (250, 120 μm) in 0.3 MPa air pressure to rough the alloy surface. The bond strengths were evaluated using a three-point bend test according to ISO 9693. The data of surface roughness, surface contact angle, and metal-ceramic bonding strength between two groups were analyzed using independent sample t-test (α= 0.05) . Scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used to evaluate microscopic features and elemental compositions.

Results

The mean surface roughness was 2.03 μm and the contact angle was 46.02° for sandblasted with 250 μm Al2O3 particles. Sandblasted with 250 μm Al2O3 provided rougher surface and better surface wettability than sandblasted with 120 μm Al2O3. The mean bonding strength of 250 μm sandblasting and 120 μm sandblasting group were (51.61 ± 5.91) and (46.62 ± 4.33) MPa, respectively. There was a statistically significant difference between two groups (t=2.360, P=0.028) . Mixture of adhesive and cohesive fracture modes were observed from fracture surfaces of all specimens.

Conclusion

Sandblasted with 250 μm Al2O3 obtain higher bond strengths than 120 μm in 0.3 MPa air pressure.

图1 钯银合金试件表面镜下观(SEM × 1000)
表1 不同粒度喷砂金属表面粗糙度和接触角( ± s
图2 金瓷试件结合界面镜下观(SEM × 500)
表2 两组试件的金瓷结合强度( ± s
图3 金瓷试件剥离面肉眼观
图4 金瓷剥离面金属暴露部分镜下观(SEM × 1000)
图5 折裂金属表面电镜二次成像
[1]
Lombardo GH, Nishioka RS, Souza RO,et al. Influence of surface treatment on the shear bond strength of ceramics fused to cobalt-chromium[J]. J Prosthodont,2010,19(2):103-111.
[2]
Oliveira de Vasconcellos LG, Silva LH, Reis de Vasconcellos LM,et al. Effect of airborne-particle abrasion and mechanico-thermal cycling on the flexural strength of glass ceramic fused to gold or cobalt-chromium alloy[J]. J Prosthodont,2011,20(7):553-560.
[3]
Schneider R, de Goes MF, Henrigues GE,et al. Tensile bond strength of dual curing resin-based cements to commercially pure titanium[J]. Dent Mater,2007,23(1):81-87.
[4]
闫召民,郭天文,李左臣,等.钛及钛合金与SOLIDEX光固化冠桥树脂粘结性能的研究[J].实用口腔医学杂志,2000,16(1):40-42.
[5]
ISO 9693:1999(E). Metal-ceramic dental restorative systems[S]. Switzer land,International Organization for Standardization,1999.
[6]
May KB, Van Putten MC, Bow DA,et al. 4-META polymethyl methacrylate shear bond strength to titanium[J]. Oper Dent,1997,22(1):37-40.
[7]
Lenz J, Schwarz S, Schwickerath H,et al. Bond strength of metal-ceramic systems in three-point flexure bond test[J]. J Appl Biomater,1995,6(1):55-64.
[8]
Lenz J, Kessel S. Thermal stresses in metal-ceramic specimens for the ISO crack initiation test(three-point flexure bond test)[J]. Dent Mater,1998,14(4):277-280.
[9]
Zhang CC, Ye JT, Zhang YP,et al. Effect of titanium preoxidation on wrought pure titanium to ceramic bond strength[J]. J Prosthet Dent,2013,109(2):106-112.
[10]
Wu Y, Moser JB, Jameson LM,et al. The effect of oxidation heat treatment of porcelain bond strength in selected base metal alloys [J]. J Prosthet Dent,1991,66(4):439-444.
[11]
Joias RM, Tango RN, Junho de Araujo JE,et al. Shear bond strength of a ceramic to Co-Cr alloys[J]. J Prosthet Dent,2008,99(1):54-59.
[12]
Serra-Prat J, Cano-Batalla J, Cabratosa-Termes J. Adhesion of dental porcelain to cast,milled,and laser-sintered cobalt-chromium alloys:shear bond strength and sensitivity to thermocycling[J]. J Prosthet Dent,2014,112(3):600-605.
[13]
Fernandes Neto AJ, Panzeri H, Neves FD,et al. Bond strength of three dental porcelains to Ni-Cr and Co-Cr-Ti alloys[J]. Braz Dent J,2006,17(1):24-28.
[14]
Pretti M, Hilgert E, Bottino MA,et al. Evaluation of the shear bond strength of the union between two CoCr-alloys and a dental ceramic[J]. J Appl Oral Sci,2004,12(4):280-284.
[15]
Ciftçi Y, Canay S, Hersek N. Shear bond strength evaluation of different veneering systems on Ni-Cr alloys[J]. J Prosthodont,2007,16(1):31-36.
[16]
Xiang N, Xin XZ, Chen J,et al. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting[J]. J Dent,2012,40(6):453-457.
[17]
Vojdani M, Shaghaghian S, Khaledi A,et al. The effect of thermal and mechanical cycling on bond strength of a ceramic to nickel-chromium(Ni-Cr)and cobalt-chromium(Co-Cr)alloys [J]. Indian J Dent Res,2012,23(4):509-513.
[18]
Papadopoulos T, Tsetsekou A, Eliades G. Effect of aluminium oxide sandblasting on cast commercially pure titanium surfaces [J]. Eur J Prosthodont Restor Dent,1999,7(1):15-21.
[19]
王晓洁,郭天文,张玉梅,等.钛表面不同喷砂条件处理对钛/瓷结合强度的影响[J].现代口腔医学杂志,2007,21(4):389-391.
[20]
Tolga K, Murat K, Çağrı U,et al. Effect of different air-abrasion particles on metal-ceramic bond strength[J]. J Dent Sci,2011,6(3):140-146.
[21]
Wang CS, Chen KK, Tajima K,et al. Effects of sandblasting media and steam cleaning on bond strength of titanium-porcelain [J]. Dent Mater J,2010,29(4):381-391.
[22]
李冬梅,郭天文,马楚凡,等.不同喷砂粒度的预处理对钛与不同瓷聚合体粘接强度的影响[J].实用口腔医学杂志,2008,24(3):357-360.
[23]
文志红,杜传诗,郑弟泽,等.不同喷砂粒度对金-瓷结合强度的影响[J].中华口腔医学杂志,1994,29(4):229-231.
[24]
杨晖,潘少明.基体表面粗糙度对涂层结合强度的影响[J].热加工工艺,2008,37(15):118-121.
[25]
Reyes MJ, Oshida Y, Andres CJ,et al. Titanium-porcelain system. Part Ⅲ:effects of surface modification on bond strengths [J]. Biomed Mater Eng,2001,11(2):117-136.
[26]
Mukai M, Fukui H, Hasegawa J. Relationship between sandblasting and composite resin-alloy bond strength by a silica coating[J]. J Prosthet Dent,1995,74(2):151-155.
[27]
王晓洁,郭天文,张玉梅,等.喷砂粒度对钛/瓷结合强度影响的研究[J].临床口腔医学杂志,2007,23(3):162-164.
[28]
Yao L, Peng C, Wu J. Wettability and bond strength between leucite-reinforced dental porcelains and Co-Cr alloy[J]. J Prosthet Dent,2013,110(6):515-520.
[29]
Wagner WC, Asgar K, Bigelow WC,et al. Effect of interfacial variables on metal-porcelain bonding[J]. J Biomed Mater Res,1993,27(4):531-537.
[30]
Johnson T, van Noort R, Stokes CW. Surface analysis of porcelain fused to metal systems[J]. Dent Mater,2006,22(4):330-337.
[1] 骆权, 夏静, 李洁银, 林诗尧, 渠艳, 叶剑涛, 廖隽琨. 铸造和激光熔融钴铬合金与瓷结合强度的比较[J]. 中华口腔医学研究杂志(电子版), 2017, 11(04): 211-217.
[2] 李洁银, 李瑞男, 刘朗, 廖隽琨, 叶秀华, 林诗尧, 叶剑涛. 铸造和切削钴铬合金与瓷结合强度的比较[J]. 中华口腔医学研究杂志(电子版), 2016, 10(01): 45-50.
[3] 马可, 高燕, 童忠春, 蒋晓琼, 林冬佳. 不同抛光系统对纳米树脂表面粗糙度和菌斑黏附的影响[J]. 中华口腔医学研究杂志(电子版), 2016, 10(01): 17-21.
阅读次数
全文


摘要