切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2013, Vol. 07 ›› Issue (02) : 100 -104. doi: 10.3877/cma.j.issn.1674-1366.2013.02.004

基础研究

牙龈卟啉单胞菌PG2206 基因突变株的构建
高雳1, 马媛媛1, 付云1, 王羽1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2012-10-30 出版日期:2013-04-01
  • 通信作者: 王羽

Construction of a mutant in the PG2206 gene of Porphyromonas gingivalis

Li GAO1, Yuanyuan MA1, Yun FU1, Yu WANG1,()   

  1. 1. Guanghua School of Stomatology,Hospital of Stomatology,Sun Yat-sen University,Guangdong Provincial Key Laboratory of Stomatology,Guangzhou 510055,China
  • Received:2012-10-30 Published:2013-04-01
  • Corresponding author: Yu WANG
引用本文:

高雳, 马媛媛, 付云, 王羽. 牙龈卟啉单胞菌PG2206 基因突变株的构建[J/OL]. 中华口腔医学研究杂志(电子版), 2013, 07(02): 100-104.

Li GAO, Yuanyuan MA, Yun FU, Yu WANG. Construction of a mutant in the PG2206 gene of Porphyromonas gingivalis[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2013, 07(02): 100-104.

目的

探讨牙龈卟啉单胞菌(P.gingivalis)PG2206 基因缺失突变株的构建方法,为进一步研究该基因的功能提供实验基础。

方法

将具有四环素抗性的重组基因载体转导入P.gingivalis W83 的感受态细胞中替换PG2206,在四环素抗性的培养基上筛选阳性克隆株,命名为PG2206 基因突变株。

结果

对阳性克隆株进行验证,成功构建出P.gingivalis W83 的PG2206 基因缺失的突变株。

结论

采用同源重组的方法可成功构建PG2206 基因突变株。

Objective

To determine the function of PG2206 gene from Porphyromonas gingivalis(P.gingivalis) W83 strain,a mutant in the PG2206 gene was constructed by homologous recombination.

Methods

The recombinant gene with tetracycline resistance was transduced into competent cells of P.gingivalis W83. After electroporated and selected on the tetracycline brain heart infusions plates,the single colony was collected and designated as PG2206 gene-deficient mutant.

Results

The positive clones were verified by PCR,which indicates that the PG2206 gene was knocked out successfully.

Conclusion

A PG2206 gene-defective mutant was created successfully.

表1 扩增基因引物预序列
图1 重组基因载体构建过程中各产物的电泳图 从左至右分别为Marker、PG2 片段(3573 bp)、PG1 片段(3916 bp)、TET 片段(1240 bp)、PG1 与TET 桥连片段(5156 bp)以及最终重组基因片段PG1+TET+PG2 片段(8729 bp)
图2 阳性克隆株的DNA 产物经PG1F+PG2R 引物扩增后的电泳图 从左至右泳道是Marker 和阳性克隆株的扩增产物。 阳性克隆株的DNA 产物经PG1F+PG2R 引物扩增后,可得到8000 ~9000 bp 大小的片段
1
Geismar K,Stoltze K,Sigurd B,et al. Periodontal disease and coronary heart disease. J Periodontol,2006,77(9):1547-1554.
2
Haffajee AD,Cugini MA,Tanner A,et al. Subgingival microbiota in healthy,well-maintained elder and periodontitis subjects. J Clin Periodontol,1998,25(5):346-353.
3
Nelson KE,Fleischmann RD,DeBoy RT,et al. Complete genome sequence of the oral pathogenic Bacterium porphyromonas gingivalis strain W83. J Bacteriol,2003,185(18):5591-5601.
4
Slakeski N,Dashper SG,Cook P,et al. A Porphyromonas gingivalis genetic locus encoding a heme transport system. Oral Microbiol Immunol,2000,15(6):388-392.
5
Rodrigues PH,Progulske-Fox A. Gene expression profile analysis of Porphyromonas gingivalis during invasion of human coronary artery endothelial cells. Infect Immun,2005,73(9):6169-6173.
6
Toyoda T,Okano S,Shibata Y,et al. Oxidative stress induces phosphorylation of the ABC transporter,ATP-binding protein,in Porphyromonas gingivalis. J Oral Sci,2010,52(4):561-566.
7
McNulty C,Thompson J,Barrett B,et al. The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD,RhsA and a multiprotein complex at the pole of the cell. Mol Microbiol,2006,59(3):907-922.
8
Park Y,Yilmaz O,Jung IY,et al. Identification of Porphyromonas gingivalis genes specifically expressed in human gingival epithelial cells by using differential display reverse transcription-PCR. Infect Immun,2004,72(7):3752-3758.
9
Lo AW,Seers CA,Boyce JD,et al. Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells. BMC Microbiol,2009(9):18.
10
Lewis VG,Ween MP,McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma,2012,249(4):919-942.
11
St Denis M,Sonier B,Robinson R,et al. Identification and characterization of a heme periplasmic-binding protein in Haemophilus ducreyi. Biometals,2011,24(4):709-722.
12
Zaitseva J,Jenewein S,Jumpertz T,et al. H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J,2005,24(11):1901-1910.
13
贺淹才. 简明基因工程原理. 2 版. 北京:科学出版社,2005:389.
14
James CE,Hasegawa Y,Park Y,et al. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infect Immun,2006,74(7):3834-3844.
15
Barkocy-Gallagher GA,Foley JW,Lantz MS. Activities of the Porphyromonas gingivalis PrtP proteinase determined by construction of prtP-deficient mutants and expression of the gene in Bacteroides species. J Bacteriol,1999,181(1):246-255.
16
Chung WO,Park Y,Lamont RJ,et al. Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol,2001,183(13):3903-3909.
[1] 冯洒然, 李德志, 林殿杰, 朱玲. 金黄色葡萄球菌和纤维连接蛋白结合蛋白A对血管内皮细胞紧密连接的破坏作用[J/OL]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 411-417.
[2] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[3] 阮毅, 艾俊, 江春, 招洛丹, 夏昕, 刘墨. 牙龈卟啉单胞菌外膜囊泡差异表达mRNA的生物信息学分析[J/OL]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 135-141.
[4] 徐娜, 吴娟, 邱绮虹, 张福萍, 梁敏. 整合素β1介导牙龈蛋白酶所致的小鼠成骨细胞周期阻滞[J/OL]. 中华口腔医学研究杂志(电子版), 2018, 12(04): 213-220.
[5] 陈倩莹, 高雳, 王盼盼, 张驰, 李希庭, 赵川江. 白细胞介素22对人牙周膜成纤维细胞核因子κB受体活化因子配体、骨保护素表达的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 19-25.
[6] 莫泽欢, 徐琼. 牙龈卟啉单胞菌脂多糖诱导人牙髓细胞炎症反应中微小RNA的表达谱变化[J/OL]. 中华口腔医学研究杂志(电子版), 2017, 11(06): 333-340.
[7] 王权成, 吴文龙, 张玄, 窦科峰, 陶开山. 人外周血单个核细胞分泌细胞因子对α-1,3-半乳糖基转移酶基因敲除猪肝细胞的作用[J/OL]. 中华移植杂志(电子版), 2020, 14(03): 182-187.
[8] 赵安竹, 付辉蓉, 李昀, 陈坚娣, 鲁红云. Cre-LoxP技术构建肝脏特异性HIF-2α基因敲除小鼠模型[J/OL]. 中华肝脏外科手术学电子杂志, 2019, 08(03): 270-275.
[9] 刘天喜, 宋琼, 许国双, 刘永鑫. X-盒结合蛋白1条件性基因敲除小鼠模型的建立[J/OL]. 中华肾病研究电子杂志, 2019, 08(01): 13-18.
[10] 欧阳颖仪, 陈盛强, 田丽如, 杨晓怡, 邢晓敏, 庄海明, 黄晓妃, 邓小燕. Fmr1基因敲除型小鼠肠道菌群结构分析[J/OL]. 中华临床实验室管理电子杂志, 2020, 08(03): 158-165.
阅读次数
全文


摘要