切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 135 -141. doi: 10.3877/cma.j.issn.1674-1366.2021.03.002

基础研究

牙龈卟啉单胞菌外膜囊泡差异表达mRNA的生物信息学分析
阮毅1, 艾俊1, 江春2, 招洛丹1, 夏昕1, 刘墨1,()   
  1. 1. 中山大学孙逸仙纪念医院牙周科,广州 510120
    2. 中山大学孙逸仙纪念医院泌尿外科,广州 510120
  • 收稿日期:2021-03-31 出版日期:2021-06-01
  • 通信作者: 刘墨

Bioinformatics analysis of differentially expressed mRNA in outer membrane vesicles of Porphyromonas gingivalis

Yi Ruan1, Jun Ai1, Chun Jiang2, Luodan Zhao1, Xin Xia1, Mo Liu1,()   

  1. 1. Department of Periodontics, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
    2. Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
  • Received:2021-03-31 Published:2021-06-01
  • Corresponding author: Mo Liu
  • Supported by:
    National Natural Science Foundation of China(81502350); Natural Science Foundation of Guangdong Province(2016A030313352, 2017A030313501)
引用本文:

阮毅, 艾俊, 江春, 招洛丹, 夏昕, 刘墨. 牙龈卟啉单胞菌外膜囊泡差异表达mRNA的生物信息学分析[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 135-141.

Yi Ruan, Jun Ai, Chun Jiang, Luodan Zhao, Xin Xia, Mo Liu. Bioinformatics analysis of differentially expressed mRNA in outer membrane vesicles of Porphyromonas gingivalis[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(03): 135-141.

目的

探讨牙龈卟啉单胞菌(P.gingivalis)W83与ATCC33277外膜囊泡mRNA表达谱的差异。

方法

超速离心法分离W83和ATCC33277来源的外膜囊泡,进行粒径检测、电镜及Western blot鉴定;高通量测序检测W83和ATCC33277外膜囊泡mRNA表达谱,筛选差异表达的mRNA,进行基因本体论(GO)注释和京都基因与基因组百科全书(KEGG)富集分析。

结果

牙龈卟啉单胞菌W83和ATCC33277分离的外膜囊泡符合囊泡特征;W83外膜囊泡中鉴定出1629个mRNA,ATCC33277外膜囊泡中鉴定出1505个mRNA,差异表达的mRNA共594个。差异具有统计学意义的mRNA参与的途径包括生物膜形成-霍乱弧菌(P = 0.011)、核糖体(P = 0.015)和细菌双组分调节系统(P = 0.026)。

结论

牙龈卟啉单胞菌W83与ATCC33277外膜囊泡mRNA表达存在差异。

Objective

To study the difference of mRNA expression profiles in the outer-membrane vesicles of Porphyromonas gingivalis W83 and ATCC33277.

Methods

The outer membrane vesicles derived from W83 and ATCC33277 were separated by ultracentrifugation. After the particle size detection, transmission electron microscopy, and Western blot, the outer membrane vesicles identified; the high-throughput sequencing technology was used to detect the mRNA expression profiles of outer membrane vesicles of W83 and ATCC33277. Membrane vesicle mRNA expression profile, which was screened out with differentially expressed mRNA, was performed by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes enrichment analysis.

Results

Outer membrane vesicles isolated from W83 and ATCC33277 met the characteristics of vesicles. We identified 1629 mRNAs in W83 outer membrane vesicles, and 1505 mRNAs in ATCC33277 outer membrane vesicles and screened out differentially expressed mRNAs. A total of 594 items was identified. Through GO analysis and KEGG analysis of differentially expressed mRNAs, the pathways related to differential genes include biofilm Formation-Vibrio cholerae (P = 0.011) , ribosome (P = 0.015) , bacterial two-component regulation system (P = 0.026) with statistical significance (P<0.05) .

Conclusion

There are different expressed mRNA between W83 and ATCC33277.

图1 ATCC33277和W83外膜囊泡通过纳米颗粒分析仪得到的粒径分布图 A:ATCC33277;B:W83;两者均符合外膜囊泡的粒径分布特征
表1 ATCC33277和W83外膜囊泡粒径统计学数据( ± s
图2 ATCC33277和W83外膜囊泡通过负染在电镜下观察 A:ATCC33277;B:W83;呈圆形或类圆形囊泡,双层膜结构
图3 W83和ATCC33277的Weston blot结果 Grp94和TSG101蛋白在W83和ATCC33277细菌本身和外膜囊泡(OMV)中的均阳性表达
图4 W83和ATCC33277外膜囊泡表达基因利用FDR与log2FC来筛选差异基因表达图(火山图)红色(W83相对于ATCC33277表达量上调)和绿色(表达量下调)的点表示基因的表达量有差异(判断标准为FDR<0.05,且差异倍数2倍以上),黑色的点为没有差异
表2 W83和ATCC33277外膜囊泡中部分与牙龈卟啉单胞菌致病因子相关的差异基因
图5 W83和ATCC33277外膜囊泡差异表达基因在生物学过程、细胞组分、分子功能三个方面的差异
图6 W83和ATCC33277外膜囊泡的差异表达基因行KEGG富集分析后得到的前20条通路
表3 W83和ATCC33277外膜囊泡的差异表达基因行KEGG富集分析具有统计学意义(P<0.05)的途径
[1]
Astuti SD,Utomo IB,Setiawatie EM,et al. Combination effect of laser diode for photodynamic therapy with doxycycline on a wistar rat model of periodontitis[J]. BMC Oral Health,2021,21(1):80. DOI:10.1186/s12903-021-01435-0.
[2]
Cecoro G,Annunziata M,Iuorio MT,et al. Periodontitis,Low-Grade Inflammation and Systemic Health:A Scoping Review[J]. Medicina(Kaunas),2020,56(6):272. DOI:10.3390/medicina56060272.
[3]
Michaud DD,Fu Z,Shi J,et al. Periodontal Disease,Tooth Loss,and Cancer Risk[J]. Epidemiol Rev,2017,39(1):49-58. DOI:10.1093/epirev/mxx006.
[4]
Ye L,Jiang Y,Liu W,et al. Correlation between periodontal disease and oral cancer risk:A meta-analysis[J]. J Cancer Res Ther,2016,12(Supplement):C237-C240. DOI:10.4103/0973-1482.200746.
[5]
Ha NH,Woo BH,Kim DJ,et al. Prolonged and repetitive exposure to Porphyromonas gingivalis increases aggressiveness of oral cancer cells by promoting acquisition of cancer stem cell properties[J]. Tumour Biol,2015,36(12):9947-9960. DOI:10.1007/s13277-015-3764-9.
[6]
Ha NH,Park DG,Woo BH,et al. Porphyromonas gingivalis increases the invasiveness of oral cancer cells by upregulating IL-8 and MMPs[J]. Cytokine,2016,86:64-72. DOI:10.1016/j.cyto.2016.07.013.
[7]
Woo BH,Kim DJ,Choi JI,et al. Oral cancer cells sustainedly infected with Porphyromonas gingivalis exhibit resistance to Taxol and have higher metastatic potential[J]. Oncotarget,2017,8(29):46981-46992. DOI:10.18632/oncotarget.16550.
[8]
Wang H,Zhang W,Wang W,et al. The prevalence of fimA genotypes of Porphyromonas gingivalis in patients with chronic periodontitis:A meta-analysis[J]. PLoS One,2020,15(10):e0240251. DOI:10.1371/journal.pone.0240251.
[9]
Werheim ER,Senior KG,Shaffer CA,et al. Oral Pathogen Porphyromonas gingivalis Can Escape Phagocytosis of Mammalian Macrophages[J]. Microorganisms,2020,8(9):1432. DOI:10.3390/microorganisms8091432.
[10]
Zhang D,Zheng H,Zhao J,et al. Porphorymonas gingivalis induces intracellular adhesion molecule-1 expression in endothelial cells through the nuclear factor-kappaB pathway,but not through the p38 MAPK pathway[J]. J Periodontal Res,2011,46(1):31-38. DOI:10.1111/j.1600-0765.2010.01305.x.
[11]
Kristoffersen AK,Solli SJ,Nguyen TD,et al. Association of the rgpB gingipain genotype to the major fimbriae(fimA)genotype in clinical isolates of the periodontal pathogen Porphyromonasgingivalis[J]. J Oral Microbio,2015,7:29124. DOI:10.3402/jom.v7.29124.
[12]
Ho MH,Chen CH,Goodwin JS,et al. Functional Advantages of Porphyromonas gingivalis Vesicles[J]. PLoS One,2015,10(4):e0123448. DOI:10.1371/journal.pone.0123448.
[13]
Veith PD,Chen YY,Gorasia DG,et al. Porphyromonas gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors[J]. J Proteome Res,2014,13(5):2420-2432. DOI:10.1021/pr401227e.
[14]
Cheng R,Liu W,Zhang R,et al. Porphyromonas gingivalis-Derived Lipopolysaccharide Combines Hypoxia to Induce Caspase-1 Activation in Periodontitis[J]. Front Cell Infect Microbiol,2017,7:474. DOI:10.3389/fcimb.2017.00474.
[15]
Leira Y,Iglesias-Rey R,Gómez-Lado N,et al. Porphyromonas gingivalis lipopolysaccharide-induced periodontitis and serum amyloid-beta peptides[J]. Arch Oral Biol,2019,99:120-125. DOI:10.1016/j.archoralbio.2019.01.008.
[16]
Yu S,Ding L,Liang D,et al. Porphyromonas gingivalis inhibits M2 activation of macrophages by suppressing α-ketoglutarate production in mice[J]. Mol Oral Microbiol,2018,33(5):388-395. DOI:10.1111/omi.12241.
[17]
Hou Y,Yu H,Liu X,et al. Gingipain of Porphyromonas gingivalis manipulates M1 macrophage polarization through C5a pathway[J]. In Vitro Cell Dev Biol Anim,2017,53(7):593-603. DOI:10.1007/s11626-017-0164-z.
[18]
Jia L,Han N,Du J,et al. Pathogenesis of Important Virulence Factors of Porphyromonas gingivalis via Toll-Like Receptors[J]. Front Cell Infect Microbiol,2019,9:262. DOI:10.3389/fcimb.2019.00262.
[19]
Mantri CK,Chen CH,Dong X,et al. Fimbriae-mediated outer membrane vesicle production and invasion of Porphyromonas gingivalis[J]. Microbiologyopen,2015,4(1):53-65. DOI:10.1002/mbo3.221.
[20]
Gui MJ,Dashper SG,Slakeski N,et al. Spheres of influence:Porphyromonas gingivalis outer membrane vesicles[J]. Mol Oral Microbiol,2016,31(5):365-378. DOI:10.1111/omi.12134.
[21]
Fleetwood AJ,Lee MKS,Singleton W,et al. Metabolic Remodeling,Inflammasome Activation,and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles[J]. Front Cell Infect Microbiol,2017,7:351. DOI:10.3389/fcimb.2017.00351.
[22]
de Mendoza ILI,Mendia XM,de la Fuente AMG,et al. Role of Porphyromonas gingivalis in oral squamous cell carcinoma development:A systematic review[J]. J periodontal Res,2020,55(1):13-22. DOI:10.1111/jre.12691.
[23]
Wu J,Lin X,Xie H. Porphyromonas gingivalis short fimbriae are regulated by a FimS/FimR two-component system[J]. FEMS Microbiol Lett,2007,271(2):214-221. DOI:10.1111/j.1574-6968.2007.00722.x.
[24]
Hirano T,Beck DAC,Wright CJ,et al. Regulon controlled by the GppX hybrid two component system in Porphyromonas gingivalis[J]. Mol Oral Microbiol,2013,28(1):70-81. DOI:10.1111/omi.12007.
[1] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[2] 徐娜, 吴娟, 邱绮虹, 张福萍, 梁敏. 整合素β1介导牙龈蛋白酶所致的小鼠成骨细胞周期阻滞[J]. 中华口腔医学研究杂志(电子版), 2018, 12(04): 213-220.
[3] 陈倩莹, 高雳, 王盼盼, 张驰, 李希庭, 赵川江. 白细胞介素22对人牙周膜成纤维细胞核因子κB受体活化因子配体、骨保护素表达的影响[J]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 19-25.
[4] 莫泽欢, 徐琼. 牙龈卟啉单胞菌脂多糖诱导人牙髓细胞炎症反应中微小RNA的表达谱变化[J]. 中华口腔医学研究杂志(电子版), 2017, 11(06): 333-340.
阅读次数
全文


摘要