切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2012, Vol. 6 ›› Issue (05) : 416 -420. doi: 10.3877/cma.j.issn.1674-1366.2012.05.005

基础研究

饥饿状态粪肠球菌生物膜胞外多糖的合成能力
刘红艳1, 韦曦1, 凌均棨1,()   
  1. 1.510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2012-02-01 出版日期:2012-10-01
  • 通信作者: 凌均棨
  • 基金资助:
    卫生部部属(管)医院2010-2012年度临床学科重点项目(显微牙髓治疗导航技术提高再处理患牙疗效的研究)广东省自然科学基金博士启动项目(S2011040002747)

Analysis of ability of extracellular polysaccharide synthesis by Enterococcus faecalis biofilm-grown cells in starvation state

Hong-yan LIU1, Xi WEI1, Jun-qi LING1,()   

  1. 1.Guanghua School of Stomatology,Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology,Guangzhou 510055, China
  • Received:2012-02-01 Published:2012-10-01
  • Corresponding author: Jun-qi LING
引用本文:

刘红艳, 韦曦, 凌均棨. 饥饿状态粪肠球菌生物膜胞外多糖的合成能力[J/OL]. 中华口腔医学研究杂志(电子版), 2012, 6(05): 416-420.

Hong-yan LIU, Xi WEI, Jun-qi LING. Analysis of ability of extracellular polysaccharide synthesis by Enterococcus faecalis biofilm-grown cells in starvation state[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2012, 6(05): 416-420.

目的

探讨饥饿环境对粪肠球菌生物膜胞外多糖合成能力的影响。

方法

体外培养饥饿状态粪肠球菌形成48 h 生物膜,凝集素标记结合倒置荧光显微镜观察胞外多糖分布情况,提取饥饿状态浮游粪肠球菌和对数期、稳定期、饥饿状态粪肠球菌48 h 生物膜胞外多糖,蒽酮法定量分析比较胞外多糖合成能力。

结果

饥饿状态粪肠球菌形成的48 h 生物膜内胞外多糖呈云絮状,与细菌分布区域不完全一致;生物膜细菌合成水溶性和水不溶性胞外多糖的能力均高于浮游细菌(P<0.05);其合成水溶性胞外多糖的能力与对数期和稳定期细菌无显著差别(P>0.05),合成水不溶性胞外多糖的能力高于后两者(P<0.05)。

结论

饥饿状态粪肠球菌合成生物膜胞外多糖的能力增强。

Objective

To investigate the influence of starvation on the ability of extracellular polysaccharide synthesis by Enterococcus faecalis (E.faecalis) biofilm-grown cells.

Methods

E.faecalis in starvation phase was developed to form biofilm. Fluorescent stains and inverted fluorescence microscope were used to monitor the distribution of extracellular polysaccharide in biofilm. Anthrone method was used to quantify the amount of extracellular polysaccharide in planktonic E.faecalis and the biofilms developed by E.faecalis cells in exponential, stationary and starvation phases.

Results

Extracellular polysaccharide was observed in 48 h biofilm formed by E.faecalis cells in starvation phase. The water soluble and water insoluble polysaccharide in the biofilm were significantly higher than those in planktonic cells (P<0.05). The differences of the amount of water soluble polysaccharide among the biofilms developed by cells in different physiologic states were not significant (P>0.05). The water insoluble polysaccharide in the biofilm formed by starved cells was higher than those formed by cells in exponential and stationary phases (P<0.05).

Conclusion

The ability of extracellular polysaccharide synthesis by E.faecalis biofilm-grown cells increased significantly in nutrient-poor environment.

A. 生物膜内细菌染色; B. 生物膜胞外多糖染色; C. 生物膜染色
表1 饥饿状态浮游粪肠球菌和48 h 生物膜细菌胞外多糖合成能力比较[n=9,(±s)%]
表2 不同生长时期粪肠球菌形成生物膜内胞外多糖能力的比较[n=9,(±s)%]
1
Chavez de Paz LE. Redefining the persistent infection in root canals:possible role of biofilm communities. J Endod, 2007,33(6):652-662.
2
Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol, 2010,8(9):623-633.
3
Baldassarri L, Bertuccini L, Ammendolia MG, et al. Receptormediated endocytosis of biofilm-forming Enterococcus faecalis by rat peritoneal macrophages. Indian J Med Res, 2004,119 Suppl:131-135.
4
Baldassarri L,Bertuccini L, Creti R, et al. Glycosaminoglycans mediate invasion and survival of Enterococcus faecalis into macrophages. J Infect Dis, 2005,191(8):1253-1262.
5
Theilacker C,Sanchez-Carballo P,Toma I, et al. Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis. Mol Microbiol, 2009,71(4):1055-1069.
6
Theilacker C, Sava I, Sanchez-Carballo P, et al. Deletion of the glycosyltransferase bgsB of Enterococcus faecalis leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation. BMC Microbiol, 2011(11):67.
7
Li W, Liu H, Xu Q. Extracellular dextran and dna affect the formation of enterococcus faecalis biofilms and their susceptibility to 2% chlorhexidine. J Endod, 2012,38(7):894-898.
8
Portenier I, Waltimo T, Ørstavik D, et al. The susceptibility of starved, stationary phase, and growing cells of Enterococcus faecalis to endodontic medicaments. J Endod, 2005,31(5):380-386.
9
Liu H, Wei X, Ling J, et al. Biofilm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite. J Endod, 2010,36(4):630-635.
10
George S, Basrani B, Kishen A. Possibilities of Gutta-perchacentered infection in endodontically treated teeth:an in vitro study. J Endod, 2010,36(7):1241-1244.
11
George S, Kishen A, Song KP. The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis. J Endod, 2005,31(12):867-872.
12
杨梅,吴昊,王晓玲. 硫酸-蒽酮法测定糯米藤中多糖的含量.西南民族大学学报:自然科学版, 2011,37(5):776-778.
13
Allison DG. Exopolysaccharide production in bacterial biofilms.Biofilm Journal, 1998,3(1):1-19.
14
Heim S, Lleo MM, Bonato B, et al. The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol, 2002,184(23):6739-6745.
15
Figdor D, Davies JK, Sundqvist G. Starvation survival, growth and recovery of Enterococcus faecalis in human serum. Oral Microbiol Immunol, 2003,18(4):234-239.
16
Kives J, Orgaz B, Sanjosé C. Polysaccharide differences between planktonic and biofilm-associated EPS from Pseudomonas fluorescens B52. Colloids Surf B Biointerfaces, 2006,52(2):123-127.
17
Sutherland I. Biofilm exopolysaccharides:a strong and sticky framework. Microbiology, 2001,147(Pt 1):3-9.
18
Mohamed JA, Huang DB. Biofilm formation by enterococci. J Med Microbiol, 2007,56(Pt 12):1581-1588.
19
Wrangstadh M, Szewzyk U, Ostling J, et al. Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp., strain S9. Appl Environ Microbiol, 1990,56(7):2065-2072.
20
Myszka K, Czaczyk K. Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr Microbiol,2009,58(6):541-546.
21
Dunne WM Jr. Bacterial adhesion:seen any good biofilms lately? Clin Microbiol Rev, 2002,15(2):155-166.
22
孟甄,金建玲,高培基. 细菌饥饿存活与耐受性. 国外医药抗生素分册, 2002,23(2):49-53.
23
Zhang X, Bishop PL. Biodegradability of biofilm extracellular polymeric substances. Chemosphere, 2003,50(1):63-69.
[1] 杨友涵, 文印宪, 陈廖斌. 噬菌体用于关节假体周围感染治疗的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 125-130.
[2] 李小兵. 伤口细菌生物膜的影响和处理[J/OL]. 中华损伤与修复杂志(电子版), 2020, 15(05): 422-422.
[3] 张利, 张阳, 马菁菁, 喻哲昊, 葛亮, 孙林春. 细胞壁锚定蛋白SasX调控RNAⅢ参与金黄色葡萄球菌ST239克隆生物膜形成及致病性相关研究[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 252-259.
[4] 田家庚, 李熳, 王赜煜, 赵莹, 张志广. 胃饥饿素介导幽门螺杆菌相关消化不良的动物实验研究[J/OL]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 313-319.
[5] 卢铭浩, 李红, 侯本祥. 根尖生物膜清除方法的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 257-261.
[6] 张延清, 冯少霞, 陈宇. 乳酸乳球菌对致龋菌生长及生物膜形成的作用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 96-102.
[7] 方道成, 陈立新, 胡媛媛. 输尿管支架结壳的相关研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 402-405.
[8] 雷莲莲, 李力, 毕婧. 胃饥饿素对小鼠急性肺损伤的保护作用及其机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 83-89.
[9] 李重, 陈飞, 王洪伟. 粪肠球菌预测结直肠癌复发的研究[J/OL]. 中华结直肠疾病电子杂志, 2021, 10(01): 81-85.
[10] 董行, 郎东浩, 符雪, 李芳, 王凌峰. 群体感应系统与生物膜耐药机制的研究现状[J/OL]. 中华临床医师杂志(电子版), 2021, 15(01): 57-60.
[11] 孙丹, 姬会春, 祝宇翀, 单宇, 刘军权, 廖雨琴. 三叶青提取物TH-w3对金黄色葡萄球菌生物膜的抑制和清除作用[J/OL]. 中华临床实验室管理电子杂志, 2022, 10(04): 227-232.
[12] 李倩珺, 黄淑洪, 雷毅怡, 冯泳琳. 黄连对生物膜状态下耐氟康唑白色念珠菌凝集素样序列基因表达影响[J/OL]. 中华临床实验室管理电子杂志, 2022, 10(02): 89-94.
[13] 麦杏连, 刘思瑶, 陈旋, 何倩君, 张中文, 钟国权, 温伟洪, 徐令清. 尿路感染粪肠球菌耐药性与耐药基因相关性研究[J/OL]. 中华临床实验室管理电子杂志, 2021, 09(02): 65-70.
[14] 杨锐富, 周燕斌. 主要协同转运蛋白超家族膜转运蛋白与细菌生物膜形成的相关性研究进展[J/OL]. 中华诊断学电子杂志, 2023, 11(02): 77-81.
[15] 向林, 江云颂, 程吕佳, 关炳生, 杨景哥. 生长素释放肽在肥胖治疗中的潜在应用价值研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 235-241.
阅读次数
全文


摘要