切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2011, Vol. 5 ›› Issue (01) : 26 -36. doi: 10.3877/cma.j.issn.1674-1366.2011.01.005

基础研究

胚鼠腭突细胞转化生长因子β3 基因的RNA 干扰及对TGFβ-Smad 信号通路的影响
陈亦阳1, 陈沐1, 汪淼1, 侯劲松1, 黄洪章1,()   
  1. 1.510055 广州,中山大学光华口腔医学院·附属口腔医院·口腔医学研究所
  • 收稿日期:2010-11-09 出版日期:2011-02-01
  • 通信作者: 黄洪章

RNAi of TGFβ3 in murine embryonic palate mesenchymal cells and its effects on TGFβ-Smad signaling pathway

Yi-yang CHEN1, Mo CHEN1, Miao WANG1, Jin-song HOU1, Hong-zhang HUANG1,()   

  1. 1.Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510055, China
  • Received:2010-11-09 Published:2011-02-01
  • Corresponding author: Hong-zhang HUANG
引用本文:

陈亦阳, 陈沐, 汪淼, 侯劲松, 黄洪章. 胚鼠腭突细胞转化生长因子β3 基因的RNA 干扰及对TGFβ-Smad 信号通路的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2011, 5(01): 26-36.

Yi-yang CHEN, Mo CHEN, Miao WANG, Jin-song HOU, Hong-zhang HUANG. RNAi of TGFβ3 in murine embryonic palate mesenchymal cells and its effects on TGFβ-Smad signaling pathway[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2011, 5(01): 26-36.

目的

探讨在胚鼠腭突培养细胞中应用StealthTM RNAi 转染有效沉默转化生长因子β3(TGFβ3)基因的可行性。

方法

采用Bal b/c 近交系小鼠在交配后第14 天取胚鼠腭突,离散后进行细胞培养,应用相差显微、MTT 法观察传代细胞的形态和生物学特性。 采用化学合成的StealthTM RNAi 抑制原代胚鼠腭突上皮细胞和间充质细胞内源性TGFβ3 mRNA表达,检测作用24、48、72 h 后,TGFβ3Smad2BMP2 三种基因的表达情况。

结果

经过本实验设计的StealthTM RNAi 干扰的胚鼠腭突培养细胞中,TGFβ3 基因的mRNA 和蛋白表达明显降低,但沉默效果随时间有减弱趋势。 Smad2 基因的mRNA 和蛋白表达均随着TGFβ3 基因的沉默而减低;但BMP2 基因的表达无显著性的改变。

结论

StealthTM RNAi 能有效地沉默TGFβ3基因,并下调Smad2 基因的表达,但对BMP2 基因表达无明确影响。

Objectives

This study was designed to evaluate the probability of applying TGFβ3 small interfering RNA (siRNA)to transfect cultured palatal process cells.

Methods

Chemically synthetical TGFβ3 siRNA warped by LipofectamineTM2000 were used to transfect primary cultured murine embryonic epithelial and mesenchymal cells, which were derived from gestational day 14 Bal b/c mouse embryos and examined by phase-contrast microscope and MTT.Semi-quantitative RT-PCR and western blot were used to exam the gene expression of TGFβ3Smad2 BMP2 at 24, 48, 72 hours after using standard dosage StealthTM RNAi.

Results

After using standard dosage of StealthTM RNAi 24, 48, 72 hours, the TGFβ3 gene expression was down regulated significantly at 24, 48, 72 hours after treatment. The Smad2 gene expression was down regulated significantly at 24 hours after treatment. However, the expression increased but not recovered at 48 hours and 2 hours after. But BMP2 gene expression showed no significant change at all three time points.

Conclusions

TGFβ3 StealthTM RNAi could silence TGFβ3 gene effectively in the murine embryonic palate cells. However, the silencing effect had tendency to attenuate. Smad2 gene mRNA and the protein expression decreased along with TGFβ3 gene silence, but BMP2 gene expression had non-significance change.

表1 TGFβ3、Smad2 和BMP2 mRNA 引物序列
表2 PCR 反应体系
图1 小鼠胚胎腭突上皮细胞呈铺路石样排列
图2 小鼠胚胎腭突间充质细胞成编织样、旋涡状排列
图3 原代培养腭突细胞生长曲线
图4 荧光Oligo 转染的胚鼠腭突细胞 荧光Oligo 进入胞浆和胞核中,在胞核处浓集
图5 StealthTM RNAi/BLOCK-iTTM Fluorescent Oligo 和LipofectamineTM 2000 空脂质体转染后腭突培养细胞的情况 A:增殖;B:凋亡
图6 转染24、48、72 h 后基因相对表达量 A:TGFβ3 基因mRNA;B:Smad2 基因mRNA;C:BMP2 基因mRNA
图7 Western blot 检测TGFβ3、Smad2 和BMP2 蛋白表达水平
图8 转染24、48、72 h 后蛋白相对表达量 A:TGFβ3 蛋白;B:Smad2 蛋白;C:BMP2 蛋白
1
Mastroiacovo P, Working Group IP. Prevalence at birth of cleft lip with or without cleft palate. Data from the International Perinatal Database of Typical Oral Clefts (IPDTOC). Cleft Palate Craniofac J, 2010.
2
Warrington A, Vieira AR, Christensen K, et al. Genetic evidence for the role of loci at 19q13 in cleft lip and palate. J Med Genet,2006,43(6):e26.
3
Dai L, Zhu J, Mao M, et al. Time trends in oral clefts in Chinese newborns: data from the Chinese National Birth Defects Monitoring Network. Birth Defects Res A Clin Mol Teratol, 2010,88(1):41-47.
4
Mossey PA, Little J, Munger RG, et al. Cleft lip and palate. Lancet, 2009,374(9703):1773-1785.
5
Jugessur A, Lie RT, Wilcox AJ, et al. Variants of developmental genes (TGFA, TGFB3, and MSX1) and their associations with orofacial clefts: a case-parent triad analysis. Genet Epidemiol, 2003,24(3):230-239.
6
Ichikawa E, Watanabe A, Nakano Y, et al. PAX9 and TGFB3 are linked to susceptibility to nonsyndromic cleft lip with or without cleft palate in the Japanese: population-based and family-based candidate gene analyses. J Hum Genet, 2006,51(1):38-46.
7
Meng L, Bian Z, Torensma R, et al. Biological mechanisms in palatogenesis and cleft palate. J Dent Res, 2009,88(1):22-33.
8
Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta,2008,1782(4):197-228.
9
Tavares AL, Mercado-Pimentel ME, Runyan RB, et al. TGF beta-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart. Dev Dyn, 2006,235(6):1589-1598.
10
Yu W, Ruest LB, Svoboda KK. Regulation of epithelial-mesenchymal transition in palatal fusion. Exp Biol Med (Maywood), 2009,234(5):483-491.
11
Proetzel G, Pawlowski SA, Wiles MV, et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet, 1995,11(4):409-414.
12
Brunet CL, Sharpe PM, Ferguson MW. Inhibition of TGF-beta 3 (but not TGF-beta 1 or TGF-beta 2) activity prevents normal mouse embryonic palate fusion. Int J Dev Biol, 1995,39(2):345-355.
13
Kaartinen V, Cui XM, Heisterkamp N, et al. Transforming growth factor-beta3 regulates transdifferentiation of medial edge epithelium during palatal fusion and associated degradation of the basement membrane. Dev Dyn, 1997,209(3):255-260.
14
Yano H, Yoshimoto H, Ohtsuru A, et al. Characterization of cultured rat embryonic palatal mesenchymal cells. Cleft Palate Craniofac J,1996,33(5):379-384.
15
肖文林,石冰,鲁勇,等. 小鼠胚胎腭突取材方法改进的研究. 口腔颌面外科杂志, 2005,15(4):397-398.
16
孙晋虎,王大章,石冰,等. A 系小鼠胚腭突细胞培养及生物学特性的研究. 华西口腔医学杂志, 2002,20(6):441-444.
17
肖文林,石冰,黄磊,等. 小鼠胚胎腭突间充质细胞的分离与体外培养方法研究. 四川大学学报(医学版), 2006,37(1):137-140.
18
Hannon GJ. RNA interference. Nature, 2002,418(6894):244-251.
19
Shao Y, Chan CY, Maliyekkel A, et al. Effect of target secondary structure on RNAi efficiency. RNA, 2007,13(10):1631-1640.
20
Liu G, Wong-Staal F, Li QX. Development of new RNAi therapeutics. Histol Histopathol, 2007,22(2):211-217.
21
张峰,刘晔,刘三光,等. RNA 干预研究及其在肿瘤基因治疗中的应用. 中华实验外科杂志, 2006,23(3):381-382.
22
Klatt AR, Klinger G, Zech D, et al. RNAi in primary human chondrocytes: efficiencies, kinetics, and non-specific effects of siRNAmediated gene suppression. Biologicals, 2007,35(4):321-328.
23
Wu MY, Hill CS. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell, 2009,16(3):329-343.
24
Juriloff DM, Harris MJ. Mouse genetic models of cleft lip with or without cleft palate. Birth Defects Res A Clin Mol Teratol, 2008,82(2):63-77.
25
Reutter H, Birnbaum S, Mende M, et al. TGFB3 displays parent-of-origin effects among central Europeans with nonsyndromic cleft lip and palate. J Hum Genet, 2008,53(7):656-661.
26
Martinez-Alvarez C, Blanco MJ, Perez R, et al. Snail family members and cell survival in physiological and pathological cleft palates. Dev Biol, 2004,265(1):207-218.
27
Donnai D, Heather LJ, Sinclair P, et al. Association of autosomal dominant cleft lip and palate and translocation 6p;3;9q22.3. Clin Dysmorphol, 1992,1(2):89-97.
28
Kaartinen V, Voncken JW, Shuler C, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet, 1995,11(4):415-421.
29
Sun D, Mcalmon KR, Davies JA, et al. Simultaneous loss of expression of syndecan-1 and E-cadherin in the embryonic palate during epithelial-mesenchymal transformation. Int J Dev Biol, 1998,42(5):733-736.
30
Martinez-Sanz E, Del RA, Barrio C, et al. Alteration of medial-edge epithelium cell adhesion in two Tgf-beta3 null mouse strains.Differentiation, 2008,76(4):417-430.
31
Gan LQ, Fu YX, Liu X, et al. Transforming growth factor-beta3 expression up-regulates on cleft palates induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. Toxicol Ind Health, 2009,25(7):473-478.
32
Nogai H, Rosowski M, Grün J, et al. Follistatin antagonizes transforming growth factor-beta3-induced epithelial-mesenchymal transition in vitro: implications for murine palatal development supported by microarray analysis. Differentiation, 2008,76(4):404-416.
33
Choi KY, Kim HJ, Cho BC, et al. A TGF-beta-induced gene, betaig-h3, is crucial for the apoptotic disappearance of the medial edge epithelium in palate fusion. J Cell Biochem, 2009,107(4):818-825.
34
Ahmed S, Liu CC, Nawshad A. Mechanisms of palatal epithelial seam disintegration by transforming growth factor (TGF) beta3. Dev Biol,2007,309(2):193-207.
35
Penheiter SG, Mitchell H, Garamszegi N, et al. Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the Smad pathway. Mol Cell Biol, 2002,22(13):4750-4759.
36
Massagué J. TGF-beta signal transduction. Annu Rev Biochem, 1998,67:753-791.
37
Nawshad A, Hay ED. TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. J Cell Biol, 2003,163(6):1291-1301.
38
Maeda O, Usami N, Kondo M, et al. Plakoglobin (gamma-catenin) has TCF/LEF family-dependent transcriptional activity in beta-catenindeficient cell line. Oncogene, 2004,23(4):964-972.
39
Greene RM, Nugent P, Mukhopadhyay P, et al. Intracellular dynamics of Smad-mediated TGFbeta signaling. J Cell Physiol, 2003,197(2):261-271.
40
Bandyopadhyay B, Fan J, Guan S, et al. A "traffic control" role for TGFbeta3: orchestrating dermal and epidermal cell motility during wound healing. J Cell Biol, 2006,172(7):1093-1105.
41
Blaney Davidson EN, Vitters EL, van der Kraan PM, et al. Expression of transforming growth factor-beta (TGFbeta) and the TGFbeta signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis, 2006,65(11):1414-1421.
[1] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[2] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[3] 宋玟焱, 杜美君, 陈佳丽, 石冰, 黄汉尧. 唇腭裂手术围手术期疼痛管理的研究进展及基于生物材料治疗新方法的展望[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 397-405.
[4] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[5] 杨林瑞, 陈仁吉. 言语治疗结合经颅磁刺激用于腭裂言语障碍康复的可行性分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 195-199.
[6] 张伟娜, 徐昊立. 基于监测的唇腭裂超声产前确诊情况分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 156-159.
[7] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[8] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[9] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[10] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[11] 蒙柄成, 朱海, 任洪冰, 毛伟民, 韦德令, 徐邦浩, 王继龙, 金宗睿, 蓝祝晶, 黄柯豫, 卢婷婷, 张灵, 郭雅, 文张. IGF-1 介导FOXO 信号通路在大鼠ALPPS 术后肝再生中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 118-125.
[12] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[13] 麦麦提依明·托合提, 柳叶, 张诚, 阿卜杜喀迪尔·牙森, 高峰, 王继超, 吴永刚. PEA3EPHA2在脑胶质母细胞瘤中的表达及在Wnt/β-catenin通路的作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 73-79.
[14] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[15] 陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.
阅读次数
全文


摘要