1 |
Mastroiacovo P, Working Group IP. Prevalence at birth of cleft lip with or without cleft palate. Data from the International Perinatal Database of Typical Oral Clefts (IPDTOC). Cleft Palate Craniofac J, 2010.
|
2 |
Warrington A, Vieira AR, Christensen K, et al. Genetic evidence for the role of loci at 19q13 in cleft lip and palate. J Med Genet,2006,43(6):e26.
|
3 |
Dai L, Zhu J, Mao M, et al. Time trends in oral clefts in Chinese newborns: data from the Chinese National Birth Defects Monitoring Network. Birth Defects Res A Clin Mol Teratol, 2010,88(1):41-47.
|
4 |
Mossey PA, Little J, Munger RG, et al. Cleft lip and palate. Lancet, 2009,374(9703):1773-1785.
|
5 |
Jugessur A, Lie RT, Wilcox AJ, et al. Variants of developmental genes (TGFA, TGFB3, and MSX1) and their associations with orofacial clefts: a case-parent triad analysis. Genet Epidemiol, 2003,24(3):230-239.
|
6 |
Ichikawa E, Watanabe A, Nakano Y, et al. PAX9 and TGFB3 are linked to susceptibility to nonsyndromic cleft lip with or without cleft palate in the Japanese: population-based and family-based candidate gene analyses. J Hum Genet, 2006,51(1):38-46.
|
7 |
Meng L, Bian Z, Torensma R, et al. Biological mechanisms in palatogenesis and cleft palate. J Dent Res, 2009,88(1):22-33.
|
8 |
Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta,2008,1782(4):197-228.
|
9 |
Tavares AL, Mercado-Pimentel ME, Runyan RB, et al. TGF beta-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart. Dev Dyn, 2006,235(6):1589-1598.
|
10 |
Yu W, Ruest LB, Svoboda KK. Regulation of epithelial-mesenchymal transition in palatal fusion. Exp Biol Med (Maywood), 2009,234(5):483-491.
|
11 |
Proetzel G, Pawlowski SA, Wiles MV, et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet, 1995,11(4):409-414.
|
12 |
Brunet CL, Sharpe PM, Ferguson MW. Inhibition of TGF-beta 3 (but not TGF-beta 1 or TGF-beta 2) activity prevents normal mouse embryonic palate fusion. Int J Dev Biol, 1995,39(2):345-355.
|
13 |
Kaartinen V, Cui XM, Heisterkamp N, et al. Transforming growth factor-beta3 regulates transdifferentiation of medial edge epithelium during palatal fusion and associated degradation of the basement membrane. Dev Dyn, 1997,209(3):255-260.
|
14 |
Yano H, Yoshimoto H, Ohtsuru A, et al. Characterization of cultured rat embryonic palatal mesenchymal cells. Cleft Palate Craniofac J,1996,33(5):379-384.
|
15 |
肖文林,石冰,鲁勇,等. 小鼠胚胎腭突取材方法改进的研究. 口腔颌面外科杂志, 2005,15(4):397-398.
|
16 |
孙晋虎,王大章,石冰,等. A 系小鼠胚腭突细胞培养及生物学特性的研究. 华西口腔医学杂志, 2002,20(6):441-444.
|
17 |
肖文林,石冰,黄磊,等. 小鼠胚胎腭突间充质细胞的分离与体外培养方法研究. 四川大学学报(医学版), 2006,37(1):137-140.
|
18 |
Hannon GJ. RNA interference. Nature, 2002,418(6894):244-251.
|
19 |
Shao Y, Chan CY, Maliyekkel A, et al. Effect of target secondary structure on RNAi efficiency. RNA, 2007,13(10):1631-1640.
|
20 |
Liu G, Wong-Staal F, Li QX. Development of new RNAi therapeutics. Histol Histopathol, 2007,22(2):211-217.
|
21 |
张峰,刘晔,刘三光,等. RNA 干预研究及其在肿瘤基因治疗中的应用. 中华实验外科杂志, 2006,23(3):381-382.
|
22 |
Klatt AR, Klinger G, Zech D, et al. RNAi in primary human chondrocytes: efficiencies, kinetics, and non-specific effects of siRNAmediated gene suppression. Biologicals, 2007,35(4):321-328.
|
23 |
Wu MY, Hill CS. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell, 2009,16(3):329-343.
|
24 |
Juriloff DM, Harris MJ. Mouse genetic models of cleft lip with or without cleft palate. Birth Defects Res A Clin Mol Teratol, 2008,82(2):63-77.
|
25 |
Reutter H, Birnbaum S, Mende M, et al. TGFB3 displays parent-of-origin effects among central Europeans with nonsyndromic cleft lip and palate. J Hum Genet, 2008,53(7):656-661.
|
26 |
Martinez-Alvarez C, Blanco MJ, Perez R, et al. Snail family members and cell survival in physiological and pathological cleft palates. Dev Biol, 2004,265(1):207-218.
|
27 |
Donnai D, Heather LJ, Sinclair P, et al. Association of autosomal dominant cleft lip and palate and translocation 6p;3;9q22.3. Clin Dysmorphol, 1992,1(2):89-97.
|
28 |
Kaartinen V, Voncken JW, Shuler C, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet, 1995,11(4):415-421.
|
29 |
Sun D, Mcalmon KR, Davies JA, et al. Simultaneous loss of expression of syndecan-1 and E-cadherin in the embryonic palate during epithelial-mesenchymal transformation. Int J Dev Biol, 1998,42(5):733-736.
|
30 |
Martinez-Sanz E, Del RA, Barrio C, et al. Alteration of medial-edge epithelium cell adhesion in two Tgf-beta3 null mouse strains.Differentiation, 2008,76(4):417-430.
|
31 |
Gan LQ, Fu YX, Liu X, et al. Transforming growth factor-beta3 expression up-regulates on cleft palates induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. Toxicol Ind Health, 2009,25(7):473-478.
|
32 |
Nogai H, Rosowski M, Grün J, et al. Follistatin antagonizes transforming growth factor-beta3-induced epithelial-mesenchymal transition in vitro: implications for murine palatal development supported by microarray analysis. Differentiation, 2008,76(4):404-416.
|
33 |
Choi KY, Kim HJ, Cho BC, et al. A TGF-beta-induced gene, betaig-h3, is crucial for the apoptotic disappearance of the medial edge epithelium in palate fusion. J Cell Biochem, 2009,107(4):818-825.
|
34 |
Ahmed S, Liu CC, Nawshad A. Mechanisms of palatal epithelial seam disintegration by transforming growth factor (TGF) beta3. Dev Biol,2007,309(2):193-207.
|
35 |
Penheiter SG, Mitchell H, Garamszegi N, et al. Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the Smad pathway. Mol Cell Biol, 2002,22(13):4750-4759.
|
36 |
Massagué J. TGF-beta signal transduction. Annu Rev Biochem, 1998,67:753-791.
|
37 |
Nawshad A, Hay ED. TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. J Cell Biol, 2003,163(6):1291-1301.
|
38 |
Maeda O, Usami N, Kondo M, et al. Plakoglobin (gamma-catenin) has TCF/LEF family-dependent transcriptional activity in beta-catenindeficient cell line. Oncogene, 2004,23(4):964-972.
|
39 |
Greene RM, Nugent P, Mukhopadhyay P, et al. Intracellular dynamics of Smad-mediated TGFbeta signaling. J Cell Physiol, 2003,197(2):261-271.
|
40 |
Bandyopadhyay B, Fan J, Guan S, et al. A "traffic control" role for TGFbeta3: orchestrating dermal and epidermal cell motility during wound healing. J Cell Biol, 2006,172(7):1093-1105.
|
41 |
Blaney Davidson EN, Vitters EL, van der Kraan PM, et al. Expression of transforming growth factor-beta (TGFbeta) and the TGFbeta signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis, 2006,65(11):1414-1421.
|