切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2009, Vol. 3 ›› Issue (06) : 598 -608. doi: 10.3877/cma.j.issn.1674-1366.2009-06-005

基础研究

纳米钙磷结晶种植体表面理化性能分析
刘臣汉1, 邓飞龙1,(), 张佩芬1, 刘森庆1, 张华1, 张辉1, 罗智斌1   
  1. 1.510055 广州,中山大学光华口腔医学院·附属口腔医院·口腔医学研究所
  • 收稿日期:2009-01-22 出版日期:2009-12-01
  • 通信作者: 邓飞龙

Analysis of physiochemical properties of implant surface with nano-scale calcium phosphate crystal

Chen-han LIU1, Fei-long DENG1,(), Pei-fen ZHANG1, Sen-qing LIU1, Hua ZHANG1, Hui ZHANG1, Zhi-bin LUO1   

  1. 1.Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510055, China
  • Received:2009-01-22 Published:2009-12-01
  • Corresponding author: Fei-long DENG
引用本文:

刘臣汉, 邓飞龙, 张佩芬, 刘森庆, 张华, 张辉, 罗智斌. 纳米钙磷结晶种植体表面理化性能分析[J/OL]. 中华口腔医学研究杂志(电子版), 2009, 3(06): 598-608.

Chen-han LIU, Fei-long DENG, Pei-fen ZHANG, Sen-qing LIU, Hua ZHANG, Hui ZHANG, Zhi-bin LUO. Analysis of physiochemical properties of implant surface with nano-scale calcium phosphate crystal[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2009, 3(06): 598-608.

目的

探讨两种纳米钙磷结晶种植体表面理化性能的差异。

方法

通过扫描电镜(SEM)观察两种种植体纳米晶体涂层表面形貌,能谱分析(EDS)、X 射线光电子能谱仪(XPS)和X 射线衍射(XRD)分析涂层晶体的化学组分及晶相,原子力显微镜(AFM)检测表面粗糙度,测量超纯水、二碘甲烷、甘油和甲酰胺在样品表面的接触角并计算表面能。

结果

Bicon NanoTiteTM 种植体表面可见直径20 ~200 nm、圆形或椭圆形晶体随机分布并与表面融为一体;直径20 ~100 nm 粒状晶体散在分布于3I NanoTiteTM 种植体表面,在凹陷周围密集累积成白色山峰状,凹陷底部晶体数量较少,钛基体外露。XPS 证实Bicon NanoTiteTM 种植体表面的纳米晶体化学组分为Ca10(PO46(OH)2 和CaCO3,3I NanoTiteTM 种植体表面晶体化学组分是Ca8H2(PO46·5H2O。 XRD 显示两种种植体表面涂层晶体均为无定形结晶。 Bicon NanoTiteTM 和3I NanoTiteTM 的表面粗糙度中,轮廓算术平均偏差(Ra)分别为(0.43 ± 0.10)μm 和(0.15 ±0.05)μm,微观不平度和点高度(Rz)分别为(2.13 ± 0.7)μm 和(0.64 ± 0.03)μm,Bicon NanoTiteTM的Ra 和Rz 均较3I NanoTiteTM 的高(P<0.05)。 Bicon NanoTiteTM 和3I NanoTiteTM 的分散成分分别为24.49、24.10 mN·m-1,极性成分分别为17.82、11.04 mN·m-1,总表面能分别为42.30、35.15 mN·m-1

结论

Bicon NanoTiteTM 种植体表面纳米晶体的中含有Ca10(PO46(OH)2,在化学成份上较3I NanoTiteTM 的纳米晶体更接近羟磷灰石,物理化学性能较好。

Objective

To compare the physical and chemical properties of two kinds of implant surfaces with nano-scale calcium phosphate crystal.

Methods

The morphologies of two nano-crystal coatings on implant surface were observed by scanning electron microscopy (SEM).The composition and crystal phase of the two coatings were analyzed by X-ray diffraction(XRD), energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS).Surface roughness was detected by atomic force microscope (AFM). Contact angles formed by four kinds of liquids on the surfaces of the two types of specimens were measured and the surface energy was calculated.

Results

The crystal diameters on Bicon NanoTiteTM surface ranged from 20 nm to 200 nm. Round and elliptic particles distributed stochastically and integrated with the surface. The irregular particles ranging from 20 nm to 100 nm in diameter were distributed dispersedly on the 3I NanoTiteTM implant surface. The amount of the crystal at the bottom of the depressed area was relatively low, the titanic substrate was exposed. XPS confirmed that the nanocrystals on Bicon NanoTiteTM implant surface were composed of Ca10(PO46(OH)2 and CaCO3. The compositions of 3I NanoTiteTM implant surface was Ca8H2(PO46·5H2O. The result of XRD showed that the crystals on the two implant surfaces were amorphous. The surface roughness of Bicon NanoTiteTM (Ra=0.43 μm ± 0.10 μm, Rz=2.13 μm ± 0.7 μm) appeared to be larger compared with 3I NanoTiteTM (Ra = 0.15 μm ± 0.05 μm, Rz = 0.64 μm ± 0.03 μm)(P<0.05). Total surface energy in Bicon NanoTiteTM were higher than that of 3I NanoTiteTM. The dispersive component of Bicon NanoTiteTM and 3I NanoTiteTM were 24.49 mN·m -1 and 24.10 mN·m -1 respectively, the polar component were 17.82 mN·m -1 and 11.04 mN·m -1 respectively.

Conclusions

The nano-crystal on Bicon NanoTiteTM surface contains Ca10(PO46(OH)2, which is more close to hydroxyapatite in chemical structure and show better physiochemical properties than that on 3I NanoTiteTM.

图1 液相在固相表面上的张力平衡
图2 Bicon NanoTiteTM 表面形貌 长5 ~20 μm、宽1 ~8 μm 裂缝和深坑(SEM ×1500)
图3 Bicon NanoTiteTM 表面形貌 圆形或椭圆形颗粒与表面融合为一体(SEM ×30 000)
图4 3I NanoTiteTM 表面形貌 直径约2 μm 的圆形凹陷分布较为规则,类似蜂窝状,白色晶体分布稀疏,主要集中在凹陷边缘(SEM ×1500)
图5 3I NanoTiteTM 表面形貌 白色山峰状晶体以外区域晶体数量较少,钛基体外露(SEM ×30 000)
表1 EDS 分析表面元素组成摩尔比(%)
图6 能谱图 A. Bicon NanoTiteTM; B. 3I NanoTiteTM
表2 XPS 分析表面元素组成摩尔比(%)
图7 Bicon NanoTiteTM 种植体表面XPS 全谱图
图8 3I NanoTiteTM 种植体表面XPS 全谱图
图9 C1s 高分辨率扫描谱 A. Bicon NanoTiteTM; B. 3I NanoTiteTM
图10 Ca2p 高分辨率扫描谱 A. Bicon NanoTiteTM; B. 3I NanoTiteTM
图11 P2p 高分辨率扫描谱 A. Bicon NanoTiteTM; B. 3I NanoTiteTM
图12 O1s 高分辨率扫描谱 A. Bicon NanoTiteTM; B. 3I NanoTiteTM
图13 样品表面X 射线衍射图谱
表3 种植体表面粗糙度(μm)(n=3,±s)
图14 原子力显微镜三维重建Bicon NanoTiteTM 表面形貌
图15 原子力显微镜三维重建3I NanoTiteTM 表面形貌
表4 液体与样品的接触角(°)(n=3,±s)
表5 样品表面能(mN·m-1
1
Le IS, Kim DH, Kim HE, et al. Biological performance of calcium phosphate films formed on commercially pure Ti by electron-beam evaporation. Biomaterials, 2002,23(2):609-615.
2
Park YS, Yi KY, Lee IS, et al. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants, 2005,20(1):31-38.
3
Choi JM,Kong YM,Kim S,et al. Formation and characterization of hydroxyapatite coating layer on Ti-based metal implant by electronbeam deposition. J Mater Res, 1999,14(7):2980-2985.
4
Jung YC, Han CH, Lee IS, et al. Effects of ion beam-assisted deposition of hydroxyapatite on the osseointegration of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants, 2001,16(6):809-818.
5
Puleo DA, Thomas MV. Implant surfaces. Dent Clin North Am, 2006,50(3):323-338.
6
Rubin MA, Jasiuk I, Taylor J, et al. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone, 2003,33(3):270-282.
7
Huang J, Best SM, Bonfield W, et al. In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci Mater Med,2004,15(4):441-445.
8
Pezzatini S, Solito R, Morbidelli L, et al. The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions.J Biomed Mater Res A, 2006,76(3):656-663.
9
Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials, 1999,20(13):1221-1227.
10
Webster TJ, Ergun C, Doremus RH, et al. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000,21(17):1803-1810.
11
Webster TJ, Ergun C, Doremus RH, et al. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials, 2001,22(11):1327-1333.
12
Christenson EM, Anseth KS, van den Beucken JJ, et al. Nanobiomaterial applications in orthopedics. J Orthop Res, 2007,25(1):11-22.
13
Weng J, Liu Q, Wolke JG, et al. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials, 1997,18(15):1027-1035.
14
Ong JL, Prince CW, Raikar GN, et al. Effect of surface topography of titanium on surface chemistry and cellular response. Implant Dent,1996,5(2):83-88.
15
Deyneka-Dupriez N, Kocdemir B, Herr U, et al. Interfacial shear strength of titanium implants in bone is significantly improved by surface topographies with high pit density and microroughness. J Biomed Mater Res B Appl Biomater, 2007,82(2):305-312.
16
Grizon F, Aguado E, Hure G, et al. Enhanced bone integration of implants with increased surface roughness: a long term study in the sheep. J Dent, 2002,30(5-6):195-203.
17
Ivanoff CJ, Hallgren C, Widmark G, et al. Histologic evaluation of the bone integration of TiO2 blasted and turned titanium microimplants in humans. Clin Oral Implants Res, 2001,12(2):128-134.
18
Li D, Ferguson SJ, Beutler T, et al. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J Biomed Mater Res, 2002,60(2):325-332.
19
Sul YT, Johansson CB, Jeong Y, et al. Oxidized implants and their influence on the bone response. J Mater Sci Mater Med, 2001,12(10-12):1025-1031.
20
Wergedal JE, Lau KH, Baylink DJ. Fluoride and bovine bone extract influence cell proliferation and phosphatase activities in human bone cell cultures. Clin Orthop Relat Res, 1988(233):274-282.
21
Wieland M, Textor M, Chehroudi B, et al. Synergistic interaction of topographic features in the production of bone-like nodules on Ti surfaces by rat osteoblasts. Biomaterials, 2005,26(10):1119-1130.
22
Bagno A, Di Bello C. Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med, 2004,15(9):935-949.
23
Eisenbarth E, Linez P, Biehl V, et al. Cell orientation and cytoskeleton organisation on ground titanium surfaces. Biomol Eng, 2002,19(2-6):233-237.
24
Thomas CH, McFarland CD, Jenkins ML, et al. The role of vitronectin in the attachment and spatial distribution of bone-derived cells on materials with patterned surface chemistry. J Biomed Mater Res, 1997,37(1):81-93.
25
Webster TJ, Schadler LS, Siegel RW, et al. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng, 2001,7(3):291-301.
26
Webster TJ, Ergun C, Doremus RH, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res, 2000,51(3):475-483.
[1] 陈天, 李歆, 刘开政, 邓永强. 口腔钛种植体成骨性能的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 200-205.
[2] 梁亮, 鄢雷, 施斌. 上前牙区改良数字化印模复制穿龈轮廓的临床研究[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 103-110.
[3] 刘红艳, 韦曦, 凌均棨. 根管封药的应用现状及研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 69-74.
[4] 黄石头, 魏洪波, 李德华. 三维打印钛种植体性能及临床应用的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 1-9.
[5] 关山, 张冰, 张开通, 王宇, 岳朝森, 程苒. 中国乳腺癌术后假体乳房重建补片材料应用现状[J/OL]. 中华普外科手术学杂志(电子版), 2022, 16(02): 123-126.
[6] 刘刚, 袁新普, 张朝军, 张炎, 黄云, 吴晓宇, 田君. 钛夹辅助结肠镜定位用于结直肠癌手术的疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2021, 15(06): 625-628.
[7] 冷昭富, 汪永新. 儿童去骨瓣减压术后颅骨成形术的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(05): 313-317.
[8] 赵卫良, 李娟, 郑永, 谢森, 缪国专. 颅骨修补术后钛网外露的临床特点及手术疗效[J/OL]. 中华神经创伤外科电子杂志, 2021, 07(05): 297-300.
[9] 袁杰, 武孝刚, 王金标, 刘璐, 王春琳. 3D打印聚醚醚酮材料在颅脑损伤后颅骨成形术中的应用疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 274-278.
[10] 陈露, 徐蓉, 吴嘉铭, 罗一宁, 廖建成, 李孟辉, 陈克恩, 张茂营. 颅内磷酸盐尿性间叶性肿瘤致骨软化症一例报道并文献复习[J/OL]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 54-57.
[11] 赵德枭, 郭永坤, 王新军, 刘婉清, 陈冠岐, 毛建超, 单峤. 聚醚醚酮与钛网修补颅骨缺损的临床应用对比分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 362-365.
[12] 刘振华, 岑水忠, 叶伟佳, 李建君, 曾炜波, 靳安民, 邱素均. 传统cage-钛板与颈椎桥形锁定融合器结合颈椎前路减压融合内固定术治疗单节段脊髓型颈椎病的效果比较[J/OL]. 中华临床医师杂志(电子版), 2022, 16(03): 213-219.
[13] 蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J/OL]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.
[14] 段林, 何艳艳, 李天晓, 陈松, 贺迎坤, 吴海刚. 镍钛合金支架表面修饰进展[J/OL]. 中华介入放射学电子杂志, 2022, 10(01): 83-87.
[15] 郑武俊, 俞晓军, 鲍斌. CT定位栅术前精准定位联合胸腔镜隧道式骨性胸廓前间隙钛板内固定术在肋骨骨折中的应用[J/OL]. 中华胸部外科电子杂志, 2021, 08(04): 264-268.
阅读次数
全文


摘要