切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2022, Vol. 16 ›› Issue (04) : 208 -218. doi: 10.3877/cma.j.issn.1674-1366.2022.04.002

口腔扁平苔藓专栏·论著

长链非编码RNA基因芯片技术筛选口腔扁平苔藓唾液外泌体差异表达基因
左雯鑫1, 袁理2, 杨天慧2, 汤剑明2, 周芷伊3, 何飞2,()   
  1. 1. 香港大学深圳医院口腔医学部,深圳 518053
    2. 深圳市人民医院口腔医学中心,深圳 518020
    3. 深圳市罗湖医院集团口腔医学中心,深圳 518001
  • 收稿日期:2022-05-20 出版日期:2022-08-01
  • 通信作者: 何飞

Screening differentially expressed genes in salivary exosomes of oral lichen planus by lncRNA microarray

Wenxin Zuo1, Li Yuan2, Tianhui Yang2, Jianming Tang2, Zhiyi Zhou3, Fei He2,()   

  1. 1. Department of Stomatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
    2. Stomatology Center, Shenzhen People′s Hospital, Shenzhen 518020, China
    3. Stomatology Center, Shenzhen Luohu Hospital Group, Shenzhen 518001, China
  • Received:2022-05-20 Published:2022-08-01
  • Corresponding author: Fei He
  • Supported by:
    Science and Technology Planning Project of Shenzhen(JCYJ20190807145815129, JCYJ20180228164611173)
引用本文:

左雯鑫, 袁理, 杨天慧, 汤剑明, 周芷伊, 何飞. 长链非编码RNA基因芯片技术筛选口腔扁平苔藓唾液外泌体差异表达基因[J/OL]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 208-218.

Wenxin Zuo, Li Yuan, Tianhui Yang, Jianming Tang, Zhiyi Zhou, Fei He. Screening differentially expressed genes in salivary exosomes of oral lichen planus by lncRNA microarray[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2022, 16(04): 208-218.

目的

研究利用基因芯片技术筛选长链非编码RNA(lncRNA)和信使RNA(mRNA)在口腔扁平苔藓(OLP)唾液外泌体中的异常表达,分析和探讨lncRNA和mRNA在OLP发生、发展中可能的分子机制。

方法

收集9例OLP患者和3名健康对照者的唾液样本,分离得到样本中的外泌体。对外泌体进行纳米颗粒跟踪分析(NTA)检测、透射电子显微镜检测和外泌体特异性生物标志物的蛋白免疫印迹法(Western blot)鉴定。使用lncRNA基因表达芯片技术比较糜烂型OLP患者(EOLP组)和网纹型OLP患者(ROLP组)与健康对照者唾液外泌体中lncRNA和mRNA的表达谱,筛选得到差异表达基因并进行基因本体(GO)功能富集分析和京都基因与基因组百科全书(KEGG)信号通路富集分析。

结果

NTA、透射电子显微镜和Western blot检测均证实分离得到外泌体。唾液外泌体lncRNA基因表达芯片结果显示,与对照组相比,EOLP组中有267个差异表达的lncRNA,其中上调99个、下调168个;有122个差异表达的mRNA,其中上调38个、下调84个;ROLP组中有201个差异表达的lncRNA,其中上调83个、下调118个;有86个差异表达的mRNA,其中上调32个、下调54个。两组有50个相同的差异表达mRNA和128个相同的差异表达lncRNA。GO和KEGG分析显示,差异表达基因涉及到基因转录、蛋白翻译和免疫反应等多个生物学过程。

结论

本研究确定了OLP患者唾液外泌体中lncRNA和mRNA的表达谱,筛选出了与OLP相关的差异表达lncRNA和mRNA,可作为诊断和阐明OLP发病机制的重要候选者。

Objective

To screen the abnormal expression of long non-coding RNAs (lncRNAs) and mRNA by lncRNA expression microarray in oral lichen planus (OLP) salivary exosomes, and to analyze and explore the possible molecular mechanism of lncRNA and mRNA in the occurrence and development of OLP.

Methods

Saliva samples from 9 OLP patients and 3 healthy controls were collected to isolate exosomes. Then, exosomes were detected by nanoparticle tracking analysis (NTA) , transmission electron microscopy and western blot analysis of exosome-specific biomarkers. The expression profiles of lncRNA and mRNA in the salivary exosomes of erosive OLP patients (EOLP group) and reticulated OLP patients (ROLP group) were compared with those of healthy controls by lncRNA expression microarray, and the differentially expressed genes were screened. The differential genes were analyzed by Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis.

Results

NTA, transmission electron microscopy and Western blot confirmed the isolation of exosomes. Compared with the control group, there were 267 differentially expressed lncRNAs in the EOLP group, including 99 up-regulated and 168 down-regulated lncRNAs, and there were 122 differentially expressed mRNAs, of which 38 were up-regulated and 84 were down-regulated. There were 201 differentially expressed lncRNAs in the ROLP group, of which 83 were up-regulated and 118 were down-regulated, and there were 86 differentially expressed mRNAs, of which 32 were up-regulated and 54 were down-regulated. There were 50 identical differentially expressed mRNAs and 128 identical differentially expressed lncRNAs in the two groups. GO and KEGG analysis showed that differentially expressed genes involved in gene transcription, protein translation, immune response and other biological processes.

Conclusions

In this study, we determined the expression profile of lncRNA and mRNA in salivary exosomes of OLP patients, and identified differentially expressed lncRNAs and mRNAs associated with OLP. These lncRNAs and mRNAs may serve as important candidates for diagnosis and elucidate the pathogenesis of OLP.

图1 唾液外泌体的鉴定 A:纳米颗粒跟踪分析(NTA);B:透射电子显微镜检测。
图2 唾液外泌体特异性生物标志物的Western blot鉴定
图3 唾液外泌体样本的基因表达量箱线图
图4 口腔扁平苔藓患者和健康对照之间的长链非编码RNA(lncRNA)和信使RNA(mRNA)谱比较 火山图用于区分糜烂型口腔扁平苔藓组差异表达的lncRNA(A)和mRNA(B);火山图用于区分网纹型口腔扁平苔藓组差异表达的lncRNA(C)和mRNA(D);FC:与对照组相比,实验组上调或下调的倍数。
图5 口腔扁平苔藓唾液外泌体与对照的差异表达基因的韦恩图 A:糜烂型口腔扁平苔藓组和网纹型口腔扁平苔藓组共有差异mRNA;B:糜烂型口腔扁平苔藓组和网纹型口腔扁平苔藓组共有差异lncRNA。
表1 糜烂型口腔扁平苔藓(EOLP)组前10个表达上调和表达下调最显著的长链非编码RNA
表2 糜烂型口腔扁平苔藓(EOLP)组前10个表达上调和表达下调最显著的信使RNA
表3 网纹型口腔扁平苔藓(ROLP)组前10个表达上调和表达下调最显著的长链非编码RNA
表4 网纹型口腔扁平苔藓(ROLP)组前10个表达上调和表达下调最显著的信使RNA
表5 糜烂型口腔扁平苔藓(EOLP)组差异表达的信使RNA富集的GO生物学术语
表6 网纹型口腔扁平苔藓(ROLP)组差异表达的信使RNA富集的GO生物学术语
表7 糜烂型口腔扁平苔藓(EOLP)组差异表达的信使RNA富集的KEGG信号通路
表8 网纹型口腔扁平苔藓(ROLP)组差异表达的信使RNA富集的KEGG信号通路
表9 糜烂型口腔扁平苔藓(EOLP)组差异表达的长链非编码RNA靶基因富集的GO生物学术语
表10 网纹型口腔扁平苔藓(ROLP)组差异表达的长链非编码RNA靶基因富集的GO生物学术语
表11 糜烂型口腔扁平苔藓(EOLP)组差异表达的长链非编码RNA靶基因富集的KEGG信号通路
表12 网纹型口腔扁平苔藓(ROLP)组差异表达的长链非编码RNA靶基因富集的KEGG信号通路
[1]
Tampa MCaruntu CMitran M,et al. Markers of oral lichen planus malignant transformation[J]. Dis Markers20182018:1959506. DOI:10.1155/2018/1959506.
[2]
González-Moles Warnakulasuriya SGonzález-Ruiz I,et al. Worldwide prevalence of oral lichen planus:A systematic review and meta-analysis[J]. Oral Dis202127(4):813-828. DOI:10.1111/odi.13323.
[3]
Ghazi NKhorasanchi M. Markers associated with malignant transformation of oral lichen planus:A review article[J]. Arch Oral Biol2021127:105158. DOI:10.1016/j.archoralbio.2021.105158.
[4]
Gupta SJawanda MK. Oral lichen planus:An update on etiology,pathogenesis,clinical presentation,diagnosis and management [J]. Indian J Dermatol201560(3):222-229. DOI:10.4103/0019-5154.156315.
[5]
Chiang CPChang JYFWang YP,et al. Oral lichen planus—Differential diagnoses,serum autoantibodies,hematinic deficiencies,and management[J]. J Formos Med Assoc2018117(9):756-765. DOI:10.1016/j.jfma.2018.01.021.
[6]
Nosratzehi T. Oral lichen planus:An overview of potential risk factors,biomarkers and treatments[J]. Asian Pac J Cancer Prev201819(5):1161-1167. DOI:10.22034/APJCP.2018.19.5.1161.
[7]
Han YJia LZheng Y,et al. Salivary exosomes:Emerging roles in systemic disease[J]. Int J Biol Sci201814(6):633-643. DOI:10.7150/ijbs.25018.
[8]
Cheshmi BCheshomi H. Salivary exosomes:Properties,medical applications,and isolation methods[J]. Mol Biol Rep202047(8):6295-6307. DOI:10.1007/s11033-020-05659-1.
[9]
Kowalczyk MSHiggs DRGingeras TR. Molecular biology:RNA discrimination[J]. Nature2012482(7385):310-311. DOI:10.1038/482310a.
[10]
Caley DPPink RCTrujillano D,et al. Long noncoding RNAs,chromatin,and development[J]. Scientific World Journal201010:90-102. DOI:10.1100/tsw.2010.7.
[11]
Bridges MCDaulagala ACKourtidis A. LNCcation:lncRNA localization and function[J]. J Cell Biol2021220(2):e202009045. DOI:10.1083/jcb.202009045.
[12]
Aune TMSpurlock CF 3rd. Long non-coding RNAs in innate and adaptive immunity[J]. Virus Res2016212:146-160. DOI:10.1016/j.virusres.2015.07.003.
[13]
Ritchie MEPhipson BWu D,et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies [J]. Nucleic Acids Res201543(7):e47. DOI:10.1093/nar/gkv007.
[14]
Alexa ARahnenfuhrer JDepends R,et al. topGO:Enrichment analysis for gene ontology.Version 2.10.0[EB/OL]. [2010-10-01]. [2022-08-24].

URL    
[15]
Yu GWang LGHan Y,et al. clusterProfiler:An R package for comparing biological themes among gene clusters[J]. OMICS201216(5):284-287. DOI:10.1089/omi.2011.0118.
[16]
Zhou GZhang JRen XW,et al. Increased B7-H1 expression on peripheral blood T cells in oral lichen planus correlated with disease severity[J]. J Clin Immunol201232(4):794-801. DOI:10.1007/s10875-012-9683-2.
[17]
Li PKaslan MLee SH,et al. Progress in exosome isolation techniques[J]. Theranostics20177(3):789-804. DOI:10.7150/thno.18133.
[18]
Deng YCao YWang L,et al. The role and application of salivary exosomes in malignant neoplasms[J]. Cancer Manag Res202113:5813-5820. DOI:10.2147/CMAR.S321225.
[19]
Zhan CYang XYin X,et al. Exosomes and other extracellular vesicles in oral and salivary gland cancers[J]. Oral Dis202026(5):865-875. DOI:10.1111/odi.13172.
[20]
Byun JSHong SHChoi JK,et al. Diagnostic profiling of salivary exosomal microRNAs in oral lichen planus patients[J]. Oral Dis201521(8):987-993. DOI:10.1111/odi.12374.
[21]
Chen YLi ZChen X,et al. Long non-coding RNAs:From disease code to drug role[J]. Acta Pharm Sin B202111(2):340-354. DOI:10.1016/j.apsb.2020.10.001.
[22]
Wang JZhai XGuo J,et al. Long non-coding RNA DQ786243 modulates the induction and function of CD4+ Treg cells through Foxp3-miR-146a-NF-κB axis:Implications for alleviating oral lichen planus[J]. Int Immunopharmacol201975:105761. DOI:10.1016/j.intimp.2019.105761.
[23]
Salmena LPoliseno LTay Y,et al. A ceRNA hypothesis:The Rosetta Stone of a hidden RNA language?[J]. Cell2011146(3):353-358. DOI:10.1016/j.cell.2011.07.014.
[24]
Wang LCho KBLi Y,et al. Long noncoding RNA(lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer [J]. Int J Mol Sci201920(22):5758. DOI:10.3390/ijms20225758.
[25]
Giraldez MDSpengler RMEtheridge A,et al. Phospho-RNA-seq:A modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma[J]. EMBO J201938(11):e101695. DOI:10.15252/embj.2019101695.
[26]
Zhao HGao YChen Q,et al. RAD51AP1 promotes progression of ovarian cancer via TGF-β/Smad signalling pathway[J]. J Cell Mol Med202125(4):1927-1938. DOI:10.1111/jcmm.15877.
[27]
Wang HDong HQiao L,et al. ZEB1 induces non-small cell lung cancer development by targeting microRNA-320a to increase the expression of RAD51AP1[J]. Exp Cell Res2021405(2):112687. DOI:10.1016/j.yexcr.2021.112687.
[28]
Wu YWang HQiao L,et al. Silencing of RAD51AP1 suppresses epithelial-mesenchymal transition and metastasis in non-small cell lung cancer[J]. Thorac Cancer201910(9):1748-1763. DOI:10.1111/1759-7714.13124.
[29]
Jing XChen YChen Y,et al. Down-regulation of USP8 inhibits cholangiocarcinoma cell proliferation and invasion[J]. Cancer Manag Res202012:2185-2194. DOI:10.2147/CMAR.S234586.
[30]
Liu YFYang ALiu W,et al. NME2 reduces proliferation,migration and invasion of gastric cancer cells to limit metastasis[J]. PLoS One201510(2):e0115968. DOI:10.1371/journal.pone.0115968.
[31]
Kayama KWatanabe STakafuji T,et al. GRWD1 negatively regulates p53 via the RPL11-MDM2 pathway and promotes tumorigenesis[J]. EMBO Rep201718(1):123-137. DOI:10.15252/embr.201642444.
[32]
Giannetti LDello Diago AMSpinas E. Oral lichen planus[J]. J Biol Regul Homeost Agents201832(2):391-395.
[33]
Roopashree MRGondhalekar RVShashikanth MC,et al. Pathogenesis of oral lichen planus:A review[J]. J Oral Pathol Med201039(10):729-734. DOI:10.1111/j.1600-0714.2010.00946.x.
[34]
Bombeccari GPGuzzi GTettamanti M,et al. Oral lichen planus and malignant transformation:A longitudinal cohort study [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod2011112(3):328-334. DOI:10.1016/j.tripleo.2011.04.009.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[3] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 王欢欢, 郑少祥, 郝金锦, 陈文亮. 胃癌分子分型的研究进展及相关联系[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 229-234.
[7] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[8] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[9] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[10] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[11] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[12] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[13] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[14] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[15] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?