切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 73 -79. doi: 10.3877/cma.j.issn.1674-1366.2024.02.001

青年编委专栏

龋病诊断方法的研究进展
钟佩芝1, 杜宇1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广东省口腔疾病临床医学研究中心,广州 510055
  • 收稿日期:2023-09-26 出版日期:2024-04-01
  • 通信作者: 杜宇

Research progress on diagnostic techniques of dental caries

Peizhi Zhong1, Yu Du1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangzhou 510055, China
  • Received:2023-09-26 Published:2024-04-01
  • Corresponding author: Yu Du
  • Supported by:
    Natural Science Foundation of Guangdong Province(2021A1515010845)
引用本文:

钟佩芝, 杜宇. 龋病诊断方法的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 73-79.

Peizhi Zhong, Yu Du. Research progress on diagnostic techniques of dental caries[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(02): 73-79.

随着新型口腔材料与数字化技术等的发展,龋病的基础和临床研究不断进步,加快了龋病诊治新技术、新材料和新器械的临床验证,为龋病早期诊断、综合预防,以及功能与美学并重的微创诊疗提供了有力手段。本文通过搜索文献,总结了目前可用于检测和诊断龋病的各项新技术及其临床应用范围和优缺点,旨在为临床工作提供依据和参照。

Due to the development of novel dental materials and digital techniques, the basic and clinical researches focusing on dental caries have been accumulated recently, which also promotes the clinical validation for the early diagnosis, comprehensive prevention, and functional-aesthetic treatment with minimal invasive intervention. By searching the literature, this article reviewed the current novel techniques that can be used to detect and diagnose caries, along with their clinical application, advantages and disadvantages, so as to provide references for the clinical application.

[1]
陈智,陈瑞甜.龋病再认识[J].口腔医学研究202036(1):1-6. DOI:10.13701/j.cnki.kqyxyj.2020.01.001.
[2]
Machiulskiene VCampus GCarvalho JC,et al. Terminology of dental caries and dental caries management:Consensus report of a workshop organized by orca and cariology research group of IADR[J]. Caries Res202054(1):7-14. DOI:10.1159/000503309.
[3]
Young DANový BBZeller GG,et al. The american dental association caries classification system for clinical practice:A report of the american dental association council on scientific affairs[J]. J Am Dent Assoc2015146(2):79-86. DOI:10.1016/j.adaj.2014.11.018.
[4]
Uribe SEInnes NMaldupa I. The global prevalence of early childhood caries:A systematic review with meta-analysis using the WHO diagnostic criteria[J]. Int J Paediatr Dent202131(6):817-830. DOI:10.1111/ipd.12783.
[5]
冯希平.中国居民口腔健康状况——第四次中国口腔健康流行病学调查报告[C]//中华口腔医学会口腔预防医学专业委员会. 2018年中华口腔医学会第十八次口腔预防医学学术年会论文汇编.西安,2018:14+13.
[6]
Cheng LZhang LYue L,et al. Expert consensus on dental caries management[J]. Int J Oral Sci202214(1):17. DOI:10.1038/s41368-022-00167-3.
[7]
Pitts NBStamm JW. International Consensus Workshop on Caries Clinical Trials(ICW-CCT)--final consensus statements:Agreeing where the evidence leads[J]. J Dent Res2004:C125-C128. DOI:10.1177/154405910408301s27.
[8]
梁景平.龋病早期诊断新技术的研究与应用[J].中华口腔医学杂志202156(1):33-38. DOI:10.3760/cma.j.cn112144-20201108-00558.
[9]
徐欣,周学东.龋病病因学研究与临床诊疗新进展[J].中华口腔医学杂志202156(1):3-9. DOI:10.3760/cma.j.cn112144-20201102-00548.
[10]
Janjic Rankovic MKapor SKhazaei Y,et al. Systematic review and meta-analysis of diagnostic studies of proximal surface caries[J]. Clin Oral Investig202125(11):6069-6079. DOI:10.1007/s00784-021-04113-1.
[11]
Masthoff MGerwing MMasthoff M,et al. Dental Imaging—A basic guide for the radiologist[J]. Rofo2019191(3):192-198. DOI:10.1055/a-0636-4129.
[12]
Oliveira LBMassignan COenning AC,et al. Validity of micro-CT for in vitro caries detection:A systematic review and meta-analysis[J]. Dentomaxillofac Radiol202049(7):20190347. DOI:10.1259/dmfr.20190347.
[13]
Tetradis SAnstey PGraff-Radford S. Cone beam computed tomography in the diagnosis of dental disease[J]. Tex Dent J2011128(7):620-628.
[14]
Macey RWalsh TRiley P,et al. Visual or visual-tactile examination to detect and inform the diagnosis of enamel caries:A Cochrane review[J]. Dental Cadmos202290(5):346-355. DOI:10.19256/d.cadmos.05.2022.05.
[15]
Aumann SDonner SFischer J,et al. Optical coherence tomography(OCT):Principle and technical realization[M]//Bille JF. High resolution imaging in microscopy and ophthalmology:New frontiers in biomedical optics. Cham(CH):Springer,2019:59-85. DOI:10.1007/978-3-030-16638-0_3.
[16]
Shimada YYoshiyama MTagami J,et al. Evaluation of dental caries,tooth crack,and age-related changes in tooth structure using optical coherence tomography[J]. Jpn Dent Sci Rev202056(1):109-118. DOI:10.1016/j.jdsr.2020.08.001.
[17]
Mohamad Saberi FNSukumaran PUng NM,et al. Assessment of demineralized tooth lesions using optical coherence tomography and other state-of-the-art technologies:A review[J]. Biomed Eng Online202221(1):83. DOI:10.1186/s12938-022-01055-x.
[18]
Ali SGilani SBSShabbir J,et al. Optical coherence tomography′s current clinical medical and dental applications:A review[J]. F1000Res202110:310. DOI:10.12688/f1000research.52031.1.
[19]
Serban CLungeanu DBota SD,et al. Emerging technologies for dentin caries detection-a systematic review and meta-analysis[J]. J Clin Med202211(3):674. DOI:10.3390/jcm11030674.
[20]
Shimada YSadr ASumi Y,et al. Application of optical coherence tomography(OCT)for diagnosis of caries,cracks,and defects of restorations[J]. Curr Oral Health Rep20152(2):73-80. DOI:10.1007/s40496-015-0045-z.
[21]
Macey RWalsh TRiley P,et al. Transillumination and optical coherence tomography for the detection and diagnosis of enamel caries[J]. Cochrane Database Syst Rev20211(1):CD013855. DOI:10.1002/14651858.CD013855.
[22]
Abdelaziz MZuluaga AFBetancourt F,et al. Optical coherence tomography(OCT)for the evaluation of internal adaptation of Class V resin restorations on Dentin[J]. Proc SPIE Int Soc Opt Eng202011217:1121706. DOI:10.1117/12.2544684.
[23]
Das ARaposo GCCLopes DS,et al. Exploiting nanomaterials for optical coherence tomography and photoacoustic imaging in nanodentistry[J]. Nanomaterials(Basel)202212(3):506. DOI:10.3390/nano12030506.
[24]
Chan KHTom HLee RC,et al. Clinical monitoring of smooth surface enamel lesions using CP-OCT during nonsurgical intervention[J]. Lasers Surg Med201648(10):915-923. DOI:10.1002/lsm.22500.
[25]
Thanh MTGvan Toan NToan DTT,et al. Diagnostic value of fluorescence methods,visual inspection and photographic visual examination in initial caries lesion:A systematic review and meta-analysis[J]. Dent J(Basel)20219(3):30. DOI:10.3390/dj9030030.
[26]
Slimani ATerrer EManton DJ,et al. Carious lesion detection technologies:Factual clinical approaches[J]. Br Dent J2020229(7):432-442. DOI:10.1038/s41415-020-2116-3.
[27]
Chu CHLo ECYou DS. Clinical diagnosis of fissure caries with conventional and laser-induced fluorescence techniques[J]. Lasers Med Sci201025(3):355-362. DOI:10.1007/s10103-009-0655-6.
[28]
Nokhbatolfoghahaie HAlikhasi MChiniforush N,et al. Evaluation of accuracy of DIAGNOdent in diagnosis of primary and secondary caries in comparison to conventional methods[J]. J Lasers Med Sci20134(4):159-167. DOI:10.1299/kikaib.64.4077.
[29]
Steier LSidhu PQasim SS,et al. Visualization of initial bacterial colonization on dentin using fluorescence activating headlight for fluorescence enhanced theragnosis[J]. Photodiagnosis Photodyn Ther202238:102732. DOI:10.1016/j.pdpdt.2022.102732.
[30]
Zhang XTu RYin W,et al. Micro-computerized tomography assessment of fluorescence aided caries excavation(FACE)technology:Comparison with three other caries removal techniques[J]. Aust Dent J201358(4):461-467. DOI:10.1111/adj.12106.
[31]
Lai GZhu LXu X,et al. An in vitro comparison of fluorescence-aided caries excavation and conventional excavation by microhardness testing[J]. Clinical Oral Investig201418(2):599-605. DOI:10.1007/s00784-013-0999-y.
[32]
Koç-Vural UErgin EGurgan S. Microhardness and shear bond-strength of carious dentin after fluorescence-aided or conventionally excavation:(An in-vitro comparison)[J]. J Clin Exp Dent201810(7):e668-e672. DOI:10.4317/jced.53592.
[33]
Lennon AMAttin TMartens S,et al. Fluorescence-aided caries excavation(FACE),caries detector,and conventional caries excavation in primary teeth[J]. Pediatric Dentistry200931(4):316-319. DOI:10.5167/uzh-27086.
[34]
Sardana DEkambaram MYang Y,et al. Caries-preventive effectiveness of two different fluoride varnishes:A randomised clinical trial in patients with multi-bracketed fixed orthodontic appliances[J]. Int J Paediatr Dent202333(1):50-62. DOI:10.1111/ipd.13013.
[35]
Dayo AFWolff MSSyed AZ,et al. Radiology of dental caries[J]. Dent Clin North Am202165(3):427-445. DOI:10.1016/j.cden.2021.02.002.
[36]
Lee JWLee ESKim BI. Optical diagnosis of dentin caries lesions using quantitative light-induced fluorescence technology[J]. Photodiagnosis Photodyn Ther201823:68-70. DOI:10.1016/j.pdpdt.2018.05.011.
[37]
Park KJMeißner TGünther E,et al. Arrest of root caries with an adjuvant chlorhexidine-fluoride varnish over a 12-months observation period:A QLF-analyzed,placebo-controlled,randomized,clinical trial(RCT)[J]. Odontology2022110(1):193-202. DOI:10.1007/s10266-021-00637-w.
[38]
Walsh TMacey RRicketts D,et al. Enamel caries detection and diagnosis:An analysis of systematic reviews[J]. J Dent Res2022101(3):261-269. DOI:10.1177/00220345211042795.
[39]
Marmaneu-Menero AIranzo-Cortés JEAlmerich-Torres T,et al. diagnostic validity of digital imaging fiber-optic transillumination (DIFOTI)and near-infrared light transillumination(NILT)for caries in dentine[J]. J Clin Med20209(2):420. DOI:10.3390/jcm9020420.
[40]
Fujimoto MYoshii SIkezawa S,et al. Development of an image sensor for dentistry - fiber connecting technique with the gradient index(GRIN)rod lens[J]. Solid State Phenomena2017260:77-84. DOI:10.4028/www.scientific.net/SSP.260.77.
[41]
Kalashnikova NPAvraamova OGKulajenko TV,et al. Modern instrumental methods for early diagnosis of dental caries[J]. Stomatologiia(Mosk)2022101(1):89-95. DOI:10.17116/stomat202210101189.
[42]
Kulajenko TVAvraamova OGKalashnikova NP,et al. Efficiency of the transillumination method in the diagnosis of caries of permanent teeth in children[J]. Stomatologiia(Mosk)2021100(4):20-25. DOI:10.17116/stomat202110004120.
[43]
Kühnisch JSöchtig FPitchika V,et al. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection[J]. Clin Oral Investig201620(4):821-829. DOI:10.1007/s00784-015-1559-4.
[44]
Ghodasra RBrizuela M. Dental caries diagnostic testing[M]. StatPearls,Treasure Island(FL):StatPearls Publishing LLC,2023.
[45]
Ozkan GGuzel KGU. Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection[J]. Lasers Med Sci201732(6):1417-1422. DOI:10.1007/s10103-017-2265-z.
[46]
Yang VZhu YCurtis D,et al. Thermal imaging of root caries in vivo[J]. J Dent Res202099(13):1502-1508. DOI:10.1177/0022034520951157.
[47]
Chang NYZhu YCurtis D,et al. SWIR,Thermal and CP-OCT imaging probes for the in vivo assessment of the activity of root caries lesions[J]. Proc SPIE Int Soc Opt Eng202011217:1121708. DOI:10.1117/12.2550982.
[48]
Silvertown JDWong BPYAbrams SH,et al. Comparison of The Canary System and DIAGNOdent for the in vitro detection of caries under opaque dental sealants[J]. J Investig Clin Dent20178(4):e12239. DOI:10.1111/jicd.12239.
[49]
Macey RWalsh TRiley P,et al. Electrical conductance for the detection of dental caries[J]. Cochrane Database Syst Rev20213(3):CD014547. DOI:10.1002/14651858.Cd014547.
[50]
Golovanenko ALTretyakova EVPatlusova ES,et al. Study of remineralizing activity of dosage forms for treatment of initial enamel caries[J]. Pharmacy & Pharmacology20186(4):380-388. DOI:10.19163/2307-9266-2018-6-4-380-388.
[51]
Cohen JE. The association between cariescan pro readings and histologic depth of caries in non cavitated occlusal lesion in vitro[J]. Dissertations & Theses-Gradworks201398(Pt2):235-253. DOI:10.1002/cne.901220307.
[52]
Popuri VDNirmala SMallineni SK,et al. In vivo comparative enactment of CarieScanPROTM with conventional methods to detect occlusal carious lesions in the mandibular primary molars[J]. Int J Clin Pediatr Dent201912(4):325-331. DOI:10.5005/jp-journals-10005-1649.
[53]
Huysmans MCLongbottom C. The challenges of validating diagnostic methods and selecting appropriate gold standards[J]. J Dent Res200483 Spec No C:C48-C52. DOI:10.1177/154405910408301s10.
[54]
Surme KKara NBYilmaz Y. In vitro evaluation of occlusal caries detection methods in primary and permanent teeth:A comparison of CarieScan PRO,DIAGNOdent Pen,and DIAGNOcam methods[J]. Photobiomodul Photomed Laser Surg202038(2):105-111. DOI:10.1089/photob.2019.4686.
[55]
Roongruangsilp PKhongkhunthian P. Artificial intelligence with the application in medicine and dentistry[J]. J Osseointegr202214(3):166-173. DOI:10.23805/jo.2022.14.22.
[56]
Wenzel A. Radiographic modalities for diagnosis of caries in a historical perspective:From film to machine-intelligence supported systems[J]. Dentomaxillofac Radiol202150(5):20210010. DOI:10.1259/dmfr.20210010.
[57]
Khanagar SBAl-Ehaideb AMaganur PC,et al. Developments,application,and performance of artificial intelligence in dentistry—A systematic review[J]. J Dent Sci202116(1):508-522. DOI:10.1016/j.jds.2020.06.019.
[58]
Holtkamp AElhennawy KCejudo Grano De Oro JE,et al. Generalizability of deep learning models for caries detection in near-infrared light transillumination images[J]. J Clin Med202110(5):961. DOI:10.3390/jcm10050961.
[59]
Devlin HWilliams TGraham J,et al. The ADEPT study:A comparative study of dentists′ ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software[J]. Br Dent J2021231(8):481-485. DOI:10.1038/s41415-021-3526-6.
[60]
Schwendicke FElhennawy KParis S,et al. Deep learning for caries lesion detection in near-infrared light transillumination images:A pilot study[J]. J Dent202092:103260. DOI:10.1016/j.jdent.2019.103260.
[61]
Prados-Privado MGarcía Villalón JMartínez-Martínez CH,et al. Dental caries diagnosis and detection using neural networks:A systematic review[J]. J Clin Med20209(11):3579. DOI:10.3390/jcm9113579.
[62]
Cantu AGGehrung SKrois J,et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning[J]. J Dent2020100:103425. DOI:10.1016/j.jdent.2020.103425.
[63]
Bayrakdar ISOrhan KAkarsu S,et al. Deep-learning approach for caries detection and segmentation on dental bitewing radiographs[J]. Oral Radiol202238(4):468-479. DOI:10.1007/s11282-021-00577-9.
[64]
Zhu HCao ZLian L,et al. CariesNet:A deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image[J]. Neural Comput Appl2022:1-9. DOI:10.1007/s00521-021-06684-2.
[65]
Talpur SAzim FRashid M,et al. Uses of different machine learning algorithms for diagnosis of dental caries[J]. J Healthc Eng2022:50324350 DOI:10.1155/2022/5032435.
[66]
Lee JHKim DHJeong SN,et al. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm[J]. J Dent201877:106-111. DOI:10.1016/j.jdent.2018.07.015.
[67]
Singh NKRaza K. Progress in deep learning-based dental and maxillofacial image analysis:A systematic review[J]. Expert Systems With Applications2022199:116968 DOI:10.1016/j.eswa.2022.116968.
[68]
Revilla-León MGómez-Polo MVyas S,et al. Artificial intelligence applications in restorative dentistry:A systematic review[J]. J Prosthet Dent2022128(5):867-875. DOI:10.1016/j.prosdent.2021.02.010.
[69]
林秀娇.基于深度学习医学影像数据的牙齿龋损分析与诊断[D].福州:福建医科大学,2023. DOI:10.27020/d.cnki.gfjyu.2020.000816.
[70]
李若竹,朱俊霞,王媛媛,等.基于深度学习的儿童龋齿人工智能识别系统雏形的开发[J].中华口腔医学杂志202156(12):1253-1260. DOI:10.3760/cma.j.cn112144-20210712-00323.
[71]
Ding BZhang ZLiang Y,et al. Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm[J]. Ann Transl Med20219(21):1622. DOI:10.21037/atm-21-4805.
[72]
Li SLiu JZhou Z,et al. Artificial intelligence for caries and periapical periodontitis detection[J]. J Dent2022122:104107. DOI:10.1016/j.jdent.2022.104107.
[73]
Taleb ARohrer CBergner B,et al. Self-supervised learning methods for label-efficient dental caries classification[J]. Diagnostics(Basel)202212(5):1237. DOI:10.3390/diagnostics12051237.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 孔德铭, 刘铮, 李睿, 钱文伟, 王飞, 蔡道章, 柴伟. 人工智能辅助全髋关节置换三维术前规划准确性评价[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 431-438.
[5] 何淳诺, 田志敏, 李焕玺, 吴昊越, 庄凯鹏, 周胜虎, 张浩强. 小儿发育性髋关节发育不良诊治的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 497-504.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[8] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[9] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[10] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[11] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[12] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[13] 赵静, 范晔, 游雅婷, 陈慧, 王静, 张静. 虚拟支气管镜导航联合径向超声支气管镜在周围型肺癌中的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 524-528.
[14] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?