切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2022, Vol. 16 ›› Issue (04) : 208 -218. doi: 10.3877/cma.j.issn.1674-1366.2022.04.002

口腔扁平苔藓专栏·论著

长链非编码RNA基因芯片技术筛选口腔扁平苔藓唾液外泌体差异表达基因
左雯鑫1, 袁理2, 杨天慧2, 汤剑明2, 周芷伊3, 何飞2,()   
  1. 1. 香港大学深圳医院口腔医学部,深圳 518053
    2. 深圳市人民医院口腔医学中心,深圳 518020
    3. 深圳市罗湖医院集团口腔医学中心,深圳 518001
  • 收稿日期:2022-05-20 出版日期:2022-08-01
  • 通信作者: 何飞

Screening differentially expressed genes in salivary exosomes of oral lichen planus by lncRNA microarray

Wenxin Zuo1, Li Yuan2, Tianhui Yang2, Jianming Tang2, Zhiyi Zhou3, Fei He2,()   

  1. 1. Department of Stomatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
    2. Stomatology Center, Shenzhen People′s Hospital, Shenzhen 518020, China
    3. Stomatology Center, Shenzhen Luohu Hospital Group, Shenzhen 518001, China
  • Received:2022-05-20 Published:2022-08-01
  • Corresponding author: Fei He
  • Supported by:
    Science and Technology Planning Project of Shenzhen(JCYJ20190807145815129, JCYJ20180228164611173)
引用本文:

左雯鑫, 袁理, 杨天慧, 汤剑明, 周芷伊, 何飞. 长链非编码RNA基因芯片技术筛选口腔扁平苔藓唾液外泌体差异表达基因[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 208-218.

Wenxin Zuo, Li Yuan, Tianhui Yang, Jianming Tang, Zhiyi Zhou, Fei He. Screening differentially expressed genes in salivary exosomes of oral lichen planus by lncRNA microarray[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2022, 16(04): 208-218.

目的

研究利用基因芯片技术筛选长链非编码RNA(lncRNA)和信使RNA(mRNA)在口腔扁平苔藓(OLP)唾液外泌体中的异常表达,分析和探讨lncRNA和mRNA在OLP发生、发展中可能的分子机制。

方法

收集9例OLP患者和3名健康对照者的唾液样本,分离得到样本中的外泌体。对外泌体进行纳米颗粒跟踪分析(NTA)检测、透射电子显微镜检测和外泌体特异性生物标志物的蛋白免疫印迹法(Western blot)鉴定。使用lncRNA基因表达芯片技术比较糜烂型OLP患者(EOLP组)和网纹型OLP患者(ROLP组)与健康对照者唾液外泌体中lncRNA和mRNA的表达谱,筛选得到差异表达基因并进行基因本体(GO)功能富集分析和京都基因与基因组百科全书(KEGG)信号通路富集分析。

结果

NTA、透射电子显微镜和Western blot检测均证实分离得到外泌体。唾液外泌体lncRNA基因表达芯片结果显示,与对照组相比,EOLP组中有267个差异表达的lncRNA,其中上调99个、下调168个;有122个差异表达的mRNA,其中上调38个、下调84个;ROLP组中有201个差异表达的lncRNA,其中上调83个、下调118个;有86个差异表达的mRNA,其中上调32个、下调54个。两组有50个相同的差异表达mRNA和128个相同的差异表达lncRNA。GO和KEGG分析显示,差异表达基因涉及到基因转录、蛋白翻译和免疫反应等多个生物学过程。

结论

本研究确定了OLP患者唾液外泌体中lncRNA和mRNA的表达谱,筛选出了与OLP相关的差异表达lncRNA和mRNA,可作为诊断和阐明OLP发病机制的重要候选者。

Objective

To screen the abnormal expression of long non-coding RNAs (lncRNAs) and mRNA by lncRNA expression microarray in oral lichen planus (OLP) salivary exosomes, and to analyze and explore the possible molecular mechanism of lncRNA and mRNA in the occurrence and development of OLP.

Methods

Saliva samples from 9 OLP patients and 3 healthy controls were collected to isolate exosomes. Then, exosomes were detected by nanoparticle tracking analysis (NTA) , transmission electron microscopy and western blot analysis of exosome-specific biomarkers. The expression profiles of lncRNA and mRNA in the salivary exosomes of erosive OLP patients (EOLP group) and reticulated OLP patients (ROLP group) were compared with those of healthy controls by lncRNA expression microarray, and the differentially expressed genes were screened. The differential genes were analyzed by Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis.

Results

NTA, transmission electron microscopy and Western blot confirmed the isolation of exosomes. Compared with the control group, there were 267 differentially expressed lncRNAs in the EOLP group, including 99 up-regulated and 168 down-regulated lncRNAs, and there were 122 differentially expressed mRNAs, of which 38 were up-regulated and 84 were down-regulated. There were 201 differentially expressed lncRNAs in the ROLP group, of which 83 were up-regulated and 118 were down-regulated, and there were 86 differentially expressed mRNAs, of which 32 were up-regulated and 54 were down-regulated. There were 50 identical differentially expressed mRNAs and 128 identical differentially expressed lncRNAs in the two groups. GO and KEGG analysis showed that differentially expressed genes involved in gene transcription, protein translation, immune response and other biological processes.

Conclusions

In this study, we determined the expression profile of lncRNA and mRNA in salivary exosomes of OLP patients, and identified differentially expressed lncRNAs and mRNAs associated with OLP. These lncRNAs and mRNAs may serve as important candidates for diagnosis and elucidate the pathogenesis of OLP.

图1 唾液外泌体的鉴定 A:纳米颗粒跟踪分析(NTA);B:透射电子显微镜检测。
图2 唾液外泌体特异性生物标志物的Western blot鉴定
图3 唾液外泌体样本的基因表达量箱线图
图4 口腔扁平苔藓患者和健康对照之间的长链非编码RNA(lncRNA)和信使RNA(mRNA)谱比较 火山图用于区分糜烂型口腔扁平苔藓组差异表达的lncRNA(A)和mRNA(B);火山图用于区分网纹型口腔扁平苔藓组差异表达的lncRNA(C)和mRNA(D);FC:与对照组相比,实验组上调或下调的倍数。
图5 口腔扁平苔藓唾液外泌体与对照的差异表达基因的韦恩图 A:糜烂型口腔扁平苔藓组和网纹型口腔扁平苔藓组共有差异mRNA;B:糜烂型口腔扁平苔藓组和网纹型口腔扁平苔藓组共有差异lncRNA。
表1 糜烂型口腔扁平苔藓(EOLP)组前10个表达上调和表达下调最显著的长链非编码RNA
表2 糜烂型口腔扁平苔藓(EOLP)组前10个表达上调和表达下调最显著的信使RNA
表3 网纹型口腔扁平苔藓(ROLP)组前10个表达上调和表达下调最显著的长链非编码RNA
表4 网纹型口腔扁平苔藓(ROLP)组前10个表达上调和表达下调最显著的信使RNA
表5 糜烂型口腔扁平苔藓(EOLP)组差异表达的信使RNA富集的GO生物学术语
表6 网纹型口腔扁平苔藓(ROLP)组差异表达的信使RNA富集的GO生物学术语
表7 糜烂型口腔扁平苔藓(EOLP)组差异表达的信使RNA富集的KEGG信号通路
表8 网纹型口腔扁平苔藓(ROLP)组差异表达的信使RNA富集的KEGG信号通路
表9 糜烂型口腔扁平苔藓(EOLP)组差异表达的长链非编码RNA靶基因富集的GO生物学术语
表10 网纹型口腔扁平苔藓(ROLP)组差异表达的长链非编码RNA靶基因富集的GO生物学术语
表11 糜烂型口腔扁平苔藓(EOLP)组差异表达的长链非编码RNA靶基因富集的KEGG信号通路
表12 网纹型口腔扁平苔藓(ROLP)组差异表达的长链非编码RNA靶基因富集的KEGG信号通路
[1]
Tampa MCaruntu CMitran M,et al. Markers of oral lichen planus malignant transformation[J]. Dis Markers20182018:1959506. DOI:10.1155/2018/1959506.
[2]
González-Moles Warnakulasuriya SGonzález-Ruiz I,et al. Worldwide prevalence of oral lichen planus:A systematic review and meta-analysis[J]. Oral Dis202127(4):813-828. DOI:10.1111/odi.13323.
[3]
Ghazi NKhorasanchi M. Markers associated with malignant transformation of oral lichen planus:A review article[J]. Arch Oral Biol2021127:105158. DOI:10.1016/j.archoralbio.2021.105158.
[4]
Gupta SJawanda MK. Oral lichen planus:An update on etiology,pathogenesis,clinical presentation,diagnosis and management [J]. Indian J Dermatol201560(3):222-229. DOI:10.4103/0019-5154.156315.
[5]
Chiang CPChang JYFWang YP,et al. Oral lichen planus—Differential diagnoses,serum autoantibodies,hematinic deficiencies,and management[J]. J Formos Med Assoc2018117(9):756-765. DOI:10.1016/j.jfma.2018.01.021.
[6]
Nosratzehi T. Oral lichen planus:An overview of potential risk factors,biomarkers and treatments[J]. Asian Pac J Cancer Prev201819(5):1161-1167. DOI:10.22034/APJCP.2018.19.5.1161.
[7]
Han YJia LZheng Y,et al. Salivary exosomes:Emerging roles in systemic disease[J]. Int J Biol Sci201814(6):633-643. DOI:10.7150/ijbs.25018.
[8]
Cheshmi BCheshomi H. Salivary exosomes:Properties,medical applications,and isolation methods[J]. Mol Biol Rep202047(8):6295-6307. DOI:10.1007/s11033-020-05659-1.
[9]
Kowalczyk MSHiggs DRGingeras TR. Molecular biology:RNA discrimination[J]. Nature2012482(7385):310-311. DOI:10.1038/482310a.
[10]
Caley DPPink RCTrujillano D,et al. Long noncoding RNAs,chromatin,and development[J]. Scientific World Journal201010:90-102. DOI:10.1100/tsw.2010.7.
[11]
Bridges MCDaulagala ACKourtidis A. LNCcation:lncRNA localization and function[J]. J Cell Biol2021220(2):e202009045. DOI:10.1083/jcb.202009045.
[12]
Aune TMSpurlock CF 3rd. Long non-coding RNAs in innate and adaptive immunity[J]. Virus Res2016212:146-160. DOI:10.1016/j.virusres.2015.07.003.
[13]
Ritchie MEPhipson BWu D,et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies [J]. Nucleic Acids Res201543(7):e47. DOI:10.1093/nar/gkv007.
[14]
Alexa ARahnenfuhrer JDepends R,et al. topGO:Enrichment analysis for gene ontology.Version 2.10.0[EB/OL]. [2010-10-01]. [2022-08-24].

URL    
[15]
Yu GWang LGHan Y,et al. clusterProfiler:An R package for comparing biological themes among gene clusters[J]. OMICS201216(5):284-287. DOI:10.1089/omi.2011.0118.
[16]
Zhou GZhang JRen XW,et al. Increased B7-H1 expression on peripheral blood T cells in oral lichen planus correlated with disease severity[J]. J Clin Immunol201232(4):794-801. DOI:10.1007/s10875-012-9683-2.
[17]
Li PKaslan MLee SH,et al. Progress in exosome isolation techniques[J]. Theranostics20177(3):789-804. DOI:10.7150/thno.18133.
[18]
Deng YCao YWang L,et al. The role and application of salivary exosomes in malignant neoplasms[J]. Cancer Manag Res202113:5813-5820. DOI:10.2147/CMAR.S321225.
[19]
Zhan CYang XYin X,et al. Exosomes and other extracellular vesicles in oral and salivary gland cancers[J]. Oral Dis202026(5):865-875. DOI:10.1111/odi.13172.
[20]
Byun JSHong SHChoi JK,et al. Diagnostic profiling of salivary exosomal microRNAs in oral lichen planus patients[J]. Oral Dis201521(8):987-993. DOI:10.1111/odi.12374.
[21]
Chen YLi ZChen X,et al. Long non-coding RNAs:From disease code to drug role[J]. Acta Pharm Sin B202111(2):340-354. DOI:10.1016/j.apsb.2020.10.001.
[22]
Wang JZhai XGuo J,et al. Long non-coding RNA DQ786243 modulates the induction and function of CD4+ Treg cells through Foxp3-miR-146a-NF-κB axis:Implications for alleviating oral lichen planus[J]. Int Immunopharmacol201975:105761. DOI:10.1016/j.intimp.2019.105761.
[23]
Salmena LPoliseno LTay Y,et al. A ceRNA hypothesis:The Rosetta Stone of a hidden RNA language?[J]. Cell2011146(3):353-358. DOI:10.1016/j.cell.2011.07.014.
[24]
Wang LCho KBLi Y,et al. Long noncoding RNA(lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer [J]. Int J Mol Sci201920(22):5758. DOI:10.3390/ijms20225758.
[25]
Giraldez MDSpengler RMEtheridge A,et al. Phospho-RNA-seq:A modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma[J]. EMBO J201938(11):e101695. DOI:10.15252/embj.2019101695.
[26]
Zhao HGao YChen Q,et al. RAD51AP1 promotes progression of ovarian cancer via TGF-β/Smad signalling pathway[J]. J Cell Mol Med202125(4):1927-1938. DOI:10.1111/jcmm.15877.
[27]
Wang HDong HQiao L,et al. ZEB1 induces non-small cell lung cancer development by targeting microRNA-320a to increase the expression of RAD51AP1[J]. Exp Cell Res2021405(2):112687. DOI:10.1016/j.yexcr.2021.112687.
[28]
Wu YWang HQiao L,et al. Silencing of RAD51AP1 suppresses epithelial-mesenchymal transition and metastasis in non-small cell lung cancer[J]. Thorac Cancer201910(9):1748-1763. DOI:10.1111/1759-7714.13124.
[29]
Jing XChen YChen Y,et al. Down-regulation of USP8 inhibits cholangiocarcinoma cell proliferation and invasion[J]. Cancer Manag Res202012:2185-2194. DOI:10.2147/CMAR.S234586.
[30]
Liu YFYang ALiu W,et al. NME2 reduces proliferation,migration and invasion of gastric cancer cells to limit metastasis[J]. PLoS One201510(2):e0115968. DOI:10.1371/journal.pone.0115968.
[31]
Kayama KWatanabe STakafuji T,et al. GRWD1 negatively regulates p53 via the RPL11-MDM2 pathway and promotes tumorigenesis[J]. EMBO Rep201718(1):123-137. DOI:10.15252/embr.201642444.
[32]
Giannetti LDello Diago AMSpinas E. Oral lichen planus[J]. J Biol Regul Homeost Agents201832(2):391-395.
[33]
Roopashree MRGondhalekar RVShashikanth MC,et al. Pathogenesis of oral lichen planus:A review[J]. J Oral Pathol Med201039(10):729-734. DOI:10.1111/j.1600-0714.2010.00946.x.
[34]
Bombeccari GPGuzzi GTettamanti M,et al. Oral lichen planus and malignant transformation:A longitudinal cohort study [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod2011112(3):328-334. DOI:10.1016/j.tripleo.2011.04.009.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[5] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[6] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[7] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[8] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[9] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[10] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[11] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[12] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[13] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[14] 王健, 赵海剑, 孙静, 张晓雨, 陈柏羽. LncRNA SNHG4表达与结直肠癌预后的关系[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 139-144.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要