切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 317 -321. doi: 10.3877/cma.j.issn.1674-1366.2018.05.009

所属专题: 口腔医学 文献

综述

可降解骨折内固定物研究进展
邵小夕1, 王祥1, 许方方1, 戴太强1, 刘斌2, 刘彦普1,()   
  1. 1. 710032 西安,军事口腔医学国家重点实验室,国家口腔疾病临床医学研究中心,陕西省口腔疾病临床医学研究中心,空军军医大学口腔医院颌面外科
    2. 710032 西安,军事口腔医学国家重点实验室,空军军医大学口腔医院动物中心
  • 收稿日期:2018-04-20 出版日期:2018-10-01
  • 通信作者: 刘彦普
  • 基金资助:
    军事口腔医学国家重点实验室自主研究课题(2017ZA02)

Research progress in degradable internal fixations

Xiaoxi Shao1, Xiang Wang1, Fangfang Xu1, Taiqiang Dai1, Bin Liu2, Yanpu Liu1,()   

  1. 1. State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Cranio-Facial Trauma and Orthognathic Surgery, School of Stomatology, The Fourth Military Medical University, Xi′an 710032, China
    2. State Key Laboratory of Military Stomatology, Laboratory Animal Center, School of Stomatology, The Fourth Military Medical University, Xi′an 710032, China
  • Received:2018-04-20 Published:2018-10-01
  • Corresponding author: Yanpu Liu
  • About author:
    Corresponding author: Liu Yanpu, Email:
引用本文:

邵小夕, 王祥, 许方方, 戴太强, 刘斌, 刘彦普. 可降解骨折内固定物研究进展[J]. 中华口腔医学研究杂志(电子版), 2018, 12(05): 317-321.

Xiaoxi Shao, Xiang Wang, Fangfang Xu, Taiqiang Dai, Bin Liu, Yanpu Liu. Research progress in degradable internal fixations[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(05): 317-321.

骨折常常需要内固定物的辅助以促进愈合。传统的不可降解内固定物由于组织反应、应力遮挡等常需要二次手术取出。目前,可降解内固定物是生物材料研究领域的热点。聚乳酸作为一种较为成熟的可降解内固定物,已实际投入临床使用,由于其机械性能较差,多应用于颌骨的非承重部位。镁合金是现在可降解内固定物的研究热点,但是其降解速率过快,降解产生氢气是其主要缺点。有关锌合金内固定物的研究较少,其十分具有发展潜力,很可能成为新一代可降解内固定系统。本文将对聚乳酸、镁合金、锌合金作为内固定系统进行综述。

Internal fixation is often applied to promote fracture healing. Traditional non-degradable internal fixations often require secondary surgical removal because of tissue reaction and stress shielding effect. At present, the degradable internal fixation is a hot topic in the field of biological material research. Polylactic acid, as a more mature degradable internal fixation material, has been clinically applied. Because of its poor mechanical properties, it is widely used in non-load bearing parts of the cranio-facial region. Magnesium alloy is a research hotspot in the field of biodegradable internal fixation. Its main disadvantage is its fast degradation rate and hydrogen release. There are few studies on zinc alloy internal fixations, which have great development potential and are very likely to become a novel degradable internal fixation system. This article will review polylactic acid, magnesium alloys, and zinc alloys as internal fixation systems.

[1]
Hanson B,van der Werken C,Stengel D. Surgeons′ beliefs and perceptions about removal of orthopaedic implants[J]. BMC Musculoskelet Disord,2008(9):73.
[2]
Unno Veith F,Lädermann A,Hoffmeyer P. Is hardware removal a necessity?[J]. Rev Med Suisse,2009,5(201):977-980.
[3]
Busam ML,Esther RJ,Obremskey WT. Hardware removal:indications and expectations[J]. J Am Acad Orthop Surg,2006,14(2):113-120.
[4]
Kulkami RK,Pani KC,Neuman C,et al. Polylactic acid for surgical implants[J]. Arch Surg,1966,93(5):839-843.
[5]
Pistner H,Stallforth H,Gutwald R,et al. Poly(L-lactide):a long-term degradation study in vivo. Part II:Physico-mechanical behaviour of implants[J]. Biomaterials,1994,15(6):439-450.
[6]
Upson SJ,Partridge SW,Tcacencu I,et al. Development of a methacrylate-terminated PLGA copolymer for potential use in craniomaxillofacial fracture plates[J]. Mater Sci Eng C Mater Biol Appl,2016(69):470-477.
[7]
Wittenberg JM,Wittenberg RH,Hipp JA. Biomechanical properties of resorbable poly-L-lactide plates and screws:a comparison with traditional systems[J]. J Oral Maxillofac Surg,1991,49(5):512-516,517-518.
[8]
Lazzeri L,Cascone MG,Danti S,et al. Gelatine/PLLA sponge-like scaffolds:morphological and biological characterization[J]. J Mater Sci Mater Med,2007,18(7):1399-1405.
[9]
Bergsma EJ,Rozema FR,Bos RR,et al. Foreign body reactions to resorbable poly(L-lactide)bone plates and screws used for the fixation of unstable zygomatic fractures[J]. J Oral Maxillofac Surg,1993,51(6):666-670.
[10]
Matsusue Y,Nakamura T,Iida H,et al. A long-term clinical study on drawn poly-L-lactide implants in orthopaedic surgery[J]. J Long Term Eff Med Implants,1997,7(2):119-137.
[11]
van Bakelen NB,Buijs GJ,Jansma J,et al. Comparison of biodegradable and titanium fixation systems in maxillofacial surgery:a two-year multi-center randomized controlled trial[J]. J Dent Res,2013,92(12):1100-1105.
[12]
Arnaud E,Renier D. Pediatric craniofacial osteosynthesis and distraction using an ultrasonic-assisted pinned resorbable system:a prospective report with a minimum 30 months′ follow-up[J]. J Craniofac Surg,2009,20(6):2081-2086.
[13]
Ahmad N,Lyles J,Panchal J,et al. Outcomes and complications based on experience with resorbable plates in pediatric craniosynostosis patients[J]. J Craniofac Surg,2008,19(3):855-860.
[14]
Pietrzak WS,Kumar M. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid)copolymer for internal fixation:in vitro characterization of hydrolysis[J]. J Craniofac Surg,2009,20(5):1533-1537.
[15]
Ishii S,Tamura J,Furukawa T,et al. Long-term study of high-strength hydroxyapatite/poly(L-lactide)composite rods for the internal fixation of bone fractures:a 2-4-year follow-up study in rabbits[J]. J Biomed Mater Res B Appl Biomater,2003,66(2):539-547.
[16]
Butt MS,Bai J,Wan X,et al. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding[J]. Mater Sci Eng C Mater Biol Appl,2017,70(Pt 1):141-147.
[17]
Witte F. The history of biodegradable magnesium implants:a review[J]. Acta Biomater,2010,6(5):1680-1692.
[18]
Zhuang J,Jing Y,Wang Y,et al. Degraded and osteogenic properties of coated magnesium alloy AZ31;an experimental study[J]. J Orthop Surg Res,2016(11):30.
[19]
Eliezer D,Aghion E,Froes FH. Magnesium science,technology and applications[J]. Adv Perform Mater,1998(5):201-212.
[20]
Song G. Control of biodegradation of biocompatable magnesium alloys[J]. Corrosion Science,2007,49(4):1696-1701.
[21]
Saris NE,Mervaala E,Karppanen H,et al. Magnesium. An update on physiological,clinical and analytical aspects[J]. Clin Chim Acta,2000,294(1-2):1-26.
[22]
Vormann J. Magnesium:nutrition and metabolism[J]. Mol Aspects Med,2003,24(1-3):27-37.
[23]
Staiger MP,Pietak AM,Huadmai J,et al. Magnesium and its alloys as orthopedic biomaterials:a review[J]. Biomaterials,2006,27(9):1728-1734.
[24]
Yoshizawa S,Brown A,Barchowsky A,et al. Role of magnesium ions on osteogenic response in bone marrow stromal cells[J]. Connect Tissue Res,2014,55 Suppl 1:155-159.
[25]
Wang J,Ma XY,Feng YF,et al. Magnesium Ions Promote the Biological Behaviour of Rat Calvarial Osteoblasts by Activating the PI3K/Akt Signalling Pathway[J]. Biol Trace Elem Res,2017,179(2):284-293.
[26]
Witte F,Kaese V,Haferkamp H,et al. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials,2005,26(17):3557-3563.
[27]
Iglesias C,Bodelón OG,Montoya R,et al. Fracture bone healing and biodegradation of AZ31 implant in rats[J]. Biomed Mater,2015,10(2):25008.
[28]
Chaya A,Yoshizawa S,Verdelis K,et al. In vivo study of magnesium plate and screw degradation and bone fracture healing[J]. Acta Biomater,2015(18):262-269.
[29]
Mcbride ED. Absorbable metal in bone surgery:A further report on the use of magnesium alloys[J]. Journal of the American Medical Association,1938,111(27):2464-2467.
[30]
Zhang S,Zhang X,Zhao C,et al. Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater,2010,6(2):626-640.
[31]
Bian D,Zhou W,Deng J,et al. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications[J]. Acta Biomater,2017(64):421-436.
[32]
Chou D,Hong D,Saha P,et al. In vitro and in vivo corrosion,cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials[J]. Acta Biomaterialia,2013,9(10):8518-8533.
[33]
Wang H,Estrin Y,Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories[J]. Materials Letters,2008,62(16):2476-2479.
[34]
Op′T Hoog C,Birbilis N,Zhang MX,et al. Surface Grain Size Effects on the Corrosion of Magnesium[J]. Key Engineering Materials,2008(384):229-240.
[35]
Kim SM,Jo JH,Lee SM,et al. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion,biocompatibility,and bone response[J]. J Biomed Mater Res A,2014,102(2):429-441.
[36]
Lee HP,Lin DJ,Yeh ML. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy:The Improved Corrosion Resistance and Osteoblast-Like Cell Activity[J]. Materials(Basel),2017,10(7).pii:E696.
[37]
Ahmadi Lakalayeh G,Rahvar M,Haririan E,et al. Comparative study of different polymeric coatings for the next-generation magnesium-based biodegradable stents[J]. Artif Cells Nanomed Biotechnol,2018,46(7):1380-1389.
[38]
Wang B,Zhao L,Zhu W,et al. Mussel-inspired nano-multilayered coating on magnesium alloys for enhanced corrosion resistance and antibacterial property[J]. Colloids Surf B Biointerfaces,2017(157):432-439.
[39]
Peng F,Wang D,Tian Y,et al. Sealing the Pores of PEO Coating with Mg-Al Layered Double Hydroxide:Enhanced Corrosion Resistance,Cytocompatibility and Drug Delivery Ability[J]. Sci Rep,2017,7(1):8167.
[40]
Kim BJ,Piao Y,Wufuer,et al. Biocompatibility and Efficiency of Biodegradable Magnesium-Based Plates and Screws in the Facial Fracture Model of Beagles[J]. J Oral Maxillofac Surg,2018,76(5):1055.e1-10551.e9.
[41]
Mostaed E,Sikora-Jasinska M,Drelich JW,et al. Zinc-based alloys for degradable vascular stent applications[J]. Acta Biomater,2018(71):1-23.
[42]
桂晓巍,张晓槟.微量元素锌、铜、硒缺乏与临床疾病[J].数理医药学杂志,2012,25(5):601-602.
[43]
Nriagu J. Zinc Toxicity in Humans[M]. Encyclopedia of Environmental Health,Burlington:Elsevier,2011:801-807.
[44]
Festa MD,Anderson HL,Dowdy RP,et al. Effect of zinc intake on copper excretion and retention in men[J]. Am J Clin Nutr,1985,41(2):285-292.
[45]
Hu D,Li K,Xie Y,et al. Different response of osteoblastic cells to Mg2+,Zn2+ and Sr2+ doped calcium silicate coatings[J]. J Mater Sci Mater Med,2016,27(3):56.
[46]
Shen X,Hu Y,Xu G,et al. Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium[J]. ACS Appl Mater Interfaces,2014,6(18):16426-16440.
[47]
Qiao Y,Zhang W,Tian P,et al. Stimulation of bone growth following zinc incorporation into biomaterials[J]. Biomaterials,2014,35(25):6882-6897.
[48]
Liang D,Yang M,Guo B,et al. Zinc upregulates the expression of osteoprotegerin in mouse osteoblasts MC3T3-E1 through PKC/MAPK pathways[J]. Biol Trace Elem Res,2012,146(3):340-348.
[49]
Zhu D,Su Y,Young ML,et al. Biological Responses and Mechanisms of Human Bone Marrow Mesenchymal Stem Cells to Zn and Mg Biomaterials[J]. ACS Appl Mater Interfaces,2017,9(33):27453-27461.
[50]
Hu H,Zhang W,Qiao Y,et al. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta Biomater,2012,8(2):904-915.
[51]
Yu Y,Jin G,Xue Y,et al. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis,angiogenesis and bacteria inhibition for dental implants[J]. Acta Biomater,2017(49):590-603.
[52]
Vojtěch D,Kubásek J,Serák J,et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomater,2011,7(9):3515-3522.
[53]
Gong H,Wang K,Strich R,et al. In vitro biodegradation behavior,mechanical properties,and cytotoxicity of biodegradable Zn-Mg alloy[J]. J Biomed Mater Res B Appl Biomater,2015,103(8):1632-1640.
[54]
Li H,Yang H,Zheng Y,et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg,Ca and Sr[J]. Materials & Design,2015(83):95-102.
[55]
Niu J,Tang Z,Huang H,et al. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J]. Mater Sci Eng C Mater Biol Appl,2016(69):407-413.
[56]
Shen C,Liu X,Fan B,et al. Mechanical properties,in vitro degradation behavior,hemocompatibility and cytotoxicity evaluation of Zn-1.2Mg alloy for biodegradable implants[J]. Rsc Advances,2016,6(89):86410-86419.
[57]
Bowen PK,Guillory RJ 2nd,Shearier ER,et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J]. Mater Sci Eng C Mater Biol Appl,2015(56):467-472.
[58]
Ma J,Zhao N,Zhu D. Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells[J]. Sci Rep,2016(6):26661.
[59]
Bowen PK,Shearier ER,Zhao S,et al. Biodegradable Metals for Cardiovascular Stents:from Clinical Concerns to Recent Zn-Alloys[J]. Adv Healthc Mater,2016,5(10):1121-1140.
[60]
Guillory RJ,Bowen PK,Hopkins SP,et al. Corrosion Characteristics Dictate the Long-Term Inflammatory Profile of Degradable Zinc Arterial Implants[J]. ACS Biomaterials Science & Engineering,2016,2(12):2355-2364.
[61]
王祥,屈功奇,戴太强,等.新型可降解锌合金内固定系统用于犬下颌骨骨折固定的研究[J].现代生物医学进展,2018,18(7):1234-1238.
[1] 谢文伟, 吴利洲, 冯庆裕, 张家勋, 叶龙城, 姚沛全, 王志坤, 李再学, 余颖锋. 双瓣钢板内固定系统治疗前交叉韧带止点骨折的研究[J]. 中华关节外科杂志(电子版), 2022, 16(06): 697-704.
[2] 周晓强, 孙超, 李志强, 徐人杰, 佘远时, 张向鑫, 陈广祥, 虞宵. 动力抗旋交叉钉治疗不稳定股骨颈骨折的早期疗效[J]. 中华关节外科杂志(电子版), 2022, 16(06): 670-676.
[3] 邹建平, 李惠锡, 陈锦明, 刘凯骅, 陈进宇, 林军华. 微创双切口与外侧L形切口治疗跟骨骨折的疗效对比[J]. 中华关节外科杂志(电子版), 2022, 16(04): 507-511.
[4] 杨德育, 尤瑞金, 郑耿阳. 成年股骨颈骨折愈合后内固定物取出术后短期随访[J]. 中华关节外科杂志(电子版), 2022, 16(04): 483-487.
[5] 李奇伟, 林涨源. 比较一期与分期手术治疗股骨转子间骨折合并椎体骨折[J]. 中华关节外科杂志(电子版), 2021, 15(05): 528-532.
[6] 黄廷杰, 贺毅, 黄建荣. 胫骨平台后外侧髁骨折的治疗及评价进展[J]. 中华关节外科杂志(电子版), 2021, 15(04): 476-481.
[7] 李永冬, 张结合, 毛立科, 朱玉洲, 赵鸣. 两种内固定术式治疗复杂胫骨平台骨折的疗效对比[J]. 中华关节外科杂志(电子版), 2021, 15(02): 252-255.
[8] 卞为伟, 唐晓波, 王健, 莫向荣, 张浩, 孙健. 关节镜下双排锚钉缝线桥技术治疗肱骨大结节骨折[J]. 中华关节外科杂志(电子版), 2020, 14(05): 623-626.
[9] 丁伟, 王小军, 封小东. 复杂胫骨平台骨折双切口双钢板内固定术的疗效[J]. 中华关节外科杂志(电子版), 2020, 14(03): 320-323.
[10] 王华国, 邹仲兵, 林伟鹏, 黄永锋, 欧荣通, 陈桂全, 叶劲. 经皮螺钉内固定微创手术在踝关节骨折的短期疗效[J]. 中华关节外科杂志(电子版), 2020, 14(02): 154-158.
[11] 詹强强, 胡一博, 李泽清, 张启福, 张鹤令, 王涛. 后踝骨折及COVID-19并发患者的治疗现状与进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 158-161.
[12] 陈丽星, 杨新明, 张瑛. 有限病灶清除后路内固定联合个体化药物治疗布鲁杆菌病性脊柱炎[J]. 中华损伤与修复杂志(电子版), 2020, 15(03): 201-209.
[13] 朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.
[14] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[15] 李洁, 黄智勇, 张翠柳. 不同补片对腹腔镜经腹腹膜前疝修补术后老年腹股沟疝患者疼痛及血浆自由基影响的对比研究[J]. 中华疝和腹壁外科杂志(电子版), 2021, 15(06): 609-612.
阅读次数
全文


摘要