切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 322 -325. doi: 10.3877/cma.j.issn.1674-1366.2018.05.010

所属专题: 口腔医学 文献

综述

环状RNA在肿瘤放射治疗中的研究展望
陈冠辉1, 李一鸣1, 余东升1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2018-04-23 出版日期:2018-10-01
  • 通信作者: 余东升
  • 基金资助:
    国家自然科学基金(81472526); 广东省科技计划(2016A020216007)

Research progress of circular RNA and its research prospects in tumor radiotherapy

Guanhui Chen1, Yiming Li1, Dongsheng Yu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2018-04-23 Published:2018-10-01
  • Corresponding author: Dongsheng Yu
  • About author:
    Corresponding author: Yu Dongsheng, Email:
引用本文:

陈冠辉, 李一鸣, 余东升. 环状RNA在肿瘤放射治疗中的研究展望[J/OL]. 中华口腔医学研究杂志(电子版), 2018, 12(05): 322-325.

Guanhui Chen, Yiming Li, Dongsheng Yu. Research progress of circular RNA and its research prospects in tumor radiotherapy[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(05): 322-325.

肿瘤细胞放射性抵抗是目前抗癌治疗中难以解决的一大难点,但其抵抗的分子机制至今尚不明确。环状RNA(circRNA)是真核生物内的一类封闭环形RNA分子,具有组织特异性、稳定性和易于检测等特点,与肿瘤的早期诊断和放疗抵抗密切相关。circRNA能发挥微小RNA(miRNA)海绵吸附作用,调控与肿瘤放疗抵抗相关的miRNA和信号转导通路,使其有望成为提高肿瘤放疗敏感性的新型生物标记物及治疗靶点。本文综述了circRNA的研究进展,并展望其在肿瘤放射治疗应用中的研究前景。

Currently, radioresistance is one of the most difficult problems in the cancer treatment and its molecular mechanisms are still not well documented. Circular RNAs are a species of RNAs with closed loop structure in eukaryote, characterized by its tissue specificity, stability and easy detection. And it is closely associated with the cancer early diagnosis and radioresistance. Circular RNAs can serve as miRNA sponges to modulate the microRNAs and signal pathways of tumor radioresistance. Therefore, circular RNAs may be expected to be a novel type of biomarkers and therapeutic targets for enhancing the radiosensitivity of tumor. Here, we reviewed the research progress of circular RNAs and discussed its research prospects in tumor radiotherapy.

[1]
Wang H,Mu X,He H,et al. Cancer Radiosensitizers[J]. Trends Pharmacol Sci,2018,39(1):24-48.
[2]
Barrett SP,Wang PL,Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor[J]. Elife,2015(4):e07540.
[3]
Rong D,Tang W,Li Z,et al. Novel insights into circular RNAs in clinical application of carcinomas[J]. Onco Targets Ther,2017(10):2183-2188.
[4]
Okholm TLH,Nielsen MM,Hamilton MP,et al. Circular RNA expression is abundant and correlated to aggressiveness in early-stage bladder cancer[J]. NPJ Genom Med,2017(2):36.
[5]
Jeck WR,Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol,2014,32(5):453-461.
[6]
Memczak S,Jens M,Elefsinioti A,et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature,2013,495(7441):333-338.
[7]
Zhang XO,Wang HB,Zhang Y,et al. Complementary sequence-mediated exon circularization[J]. Cell,2014,159(1):134-147.
[8]
Thomas LF,Saetrom P. Circular RNAs are depleted of polymorphisms at microRNA binding sites[J]. Bioinformatics,2014,30(16):2243-2246.
[9]
Li Z,Huang C,Bao C,et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol,2015,22(3):256-264.
[10]
Zhang Y,Zhang XO,Chen T,et al. Circular intronic long noncoding RNAs[J]. Mol Cell,2013,51(6):792-806.
[11]
Ashwal-Fluss R,Meyer M,Pamudurti NR,et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell,2014,56(1):55-66.
[12]
Hansen TB,Jensen TI,Clausen BH,et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature,2013,495(7441):384-388.
[13]
Ma HB,Yao YN,Yu JJ,et al. Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506[J]. Am J Transl Res,2018,10(2):592-604.
[14]
Ma X,Yang X,Bao W,et al. Circular RNA circMAN2B2 facilitates lung cancer cell proliferation and invasion via miR-1275/FOXK1 axis[J]. Biochem Biophys Res Commun,2018,498(4):1009-1015.
[15]
You X,Vlatkovic I,Babic A,et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity[J]. Nat Neurosci,2015,18(4):603-610.
[16]
Wang M,Yang Y,Xu J,et al. CircRNAs as biomarkers of cancer:a meta-analysis[J]. BMC Cancer,2018,18(1):303.
[17]
Du WW,Zhang C,Yang W,et al. Identifying and Characterizing circRNA-Protein Interaction[J]. Theranostics,2017,7(17):4183-4191.
[18]
Yang Q,Du WW,Wu N,et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation[J]. Cell Death Differ,2017,24(9):1609-1620.
[19]
Abdelmohsen K,Panda AC,Munk R,et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol,2017,14(3):361-369.
[20]
Du WW,Yang W,Liu E,et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res,2016,44(6):2846-2858.
[21]
Su H,Lin F,Deng X,et al. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells[J]. J Transl Med,2016,14(1):225.
[22]
Yu D,Li Y,Ming Z,et al. Comprehensive circular RNA expression profile in radiation-treated HeLa cells and analysis of radioresistance-related circRNAs[J]. PeerJ,2018(6):e5011.
[23]
Wang Y,Mo Y,Gong Z,et al. Circular RNAs in human cancer[J]. Mol Cancer,2017,16(1):25.
[24]
Tang W,Ji M,He G,et al. Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7[J]. Onco Targets Ther,2017(10):2045-2056.
[25]
Wan L,Zhang L,Fan K,et al. Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/β-Catenin Pathway[J]. Biomed Res Int,2016(2016):1579490.
[26]
Metheetrairut C,Slack FJ. MicroRNAs in the ionizing radiation response and in radiotherapy[J]. Curr Opin Genet Dev,2013,23(1):12-19.
[27]
Mueller AK,Lindner K,Hummel R,et al. MicroRNAs and Their Impact on Radiotherapy for Cancer[J]. Radiat Res,2016,185(6):668-677.
[28]
Hu JL,He GY,Lan XL,et al. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer[J]. Oncogenesis,2018,7(2):16.
[29]
Lu HJ,Jin PY,Tang Y,et al. microRNA-136 inhibits proliferation and promotes apoptosis and radiosensitivity of cervical carcinoma through the NF-κB pathway by targeting E2F1[J]. Life Sci,2018(199):167-178.
[30]
Moskwa P,Zinn PO,Choi YE,et al. A functional screen identifies miRs that induce radioresistance in glioblastomas[J]. Mol Cancer Res,2014,12(12):1767-1778.
[31]
Horn D,Hess J,Freier K,et al. Targeting EGFR-PI3K-AKT-mTOR signaling enhances radiosensitivity in head and neck squamous cell carcinoma[J]. Expert Opin Ther Targets,2015,19(6):795-805.
[32]
Davis AJ,Lee KJ,Chen DJ. The N-terminal region of the DNA-dependent protein kinase catalytic subunit is required for its DNA double-stranded break-mediated activation[J]. J Biol Chem,2013,288(10):7037-7046.
[33]
Lee KM,Choi EJ,Kim IA. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling[J]. Radiother Oncol,2011,101(1):171-176.
[34]
Shi Y,Zhang X,Tang X,et al. MiR-21 is continually elevated long-term in the brain after exposure to ionizing radiation[J]. Radiat Res,2012,177(1):124-128.
[35]
Yang QS,Jiang LP,He CY,et al. Up-Regulation of MicroRNA-133a Inhibits the MEK/ERK Signaling Pathway to Promote Cell Apoptosis and Enhance Radio-Sensitivity by Targeting EGFR in Esophageal Cancer In Vivo and In Vitro[J]. J Cell Biochem,2017,118(9):2625-2634.
[36]
Toulany M,Rodemann HP. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation[J]. Semin Cancer Biol,2015(35):180-190.
[37]
Yang L,Yang G,Ding Y,et al. Inhibition of PI3K/AKT Signaling Pathway Radiosensitizes Pancreatic Cancer Cells with ARID1A Deficiency in Vitro[J]. J Cancer,2018,9(5):890-900.
[38]
Wu SJ,Chen J,Wu B,et al. MicroRNA-150 enhances radiosensitivity by inhibiting the AKT pathway in NK/T cell lymphoma[J]. J Exp Clin Cancer Res,2018,37(1):18.
[39]
Wang J,Xu J,Fu J,et al. MiR-29a Regulates Radiosensitivity in Human Intestinal Cells by Targeting PTEN Gene[J]. Radiat Res,2016,186(3):292-301.
[40]
Chang JH,Hwang YH,Lee DJ,et al. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells[J]. Int J Radiat Oncol Biol Phys,2016,94(2):412-420.
[41]
Zheng L,Zhang Y,Liu Y,et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer[J]. J Transl Med,2015(13):252.
[42]
Zhang Y,Zheng L,Ding Y,et al. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma[J]. Int J Radiat Oncol Biol Phys,2015,92(5):1132-1140.
[43]
Faghfuri E,Nikfar S,Niaz K,et al. Mitogen-activated protein kinase(MEK)inhibitors to treat melanoma alone or in combination with other kinase inhibitors[J]. Expert Opin Drug Metab Toxicol,2018,14(3):317-330.
[44]
Yacoub A,McKinstry R,Hinman D,et al. Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling[J]. Radiat Res,2003,159(4):439-452.
[45]
Munshi A,Ramesh R. Mitogen-activated protein kinases and their role in radiation response[J]. Genes Cancer,2013,4(9-10):401-408.
[46]
Czochor JR,Glazer PM. microRNAs in cancer cell response to ionizing radiation[J]. Antioxid Redox Signal,2014,21(2):293-312.
[47]
Zhu Y,Shi LY,Lei YM,et al. Radiosensitization effect of hsa-miR-138-2-3p on human laryngeal cancer stem cells[J]. PeerJ,2017(5):e3233.
[48]
Yang W,Shen Y,Wei J,et al. MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species[J]. Oncotarget,2015,6(26):22006-22027.
[49]
Fischer JW,Leung AK. CircRNAs:a regulator of cellular stress[J]. Crit Rev Biochem Mol Biol,2017,52(2):220-233.
[50]
Li Y,Zheng Q,Bao C,et al. Circular RNA is enriched and stable in exosomes:a promising biomarker for cancer diagnosis[J]. Cell Res,2015,25(8):981-984.
[51]
Yang T,Li S,Liu J,et al. lncRNA-NKILA/NF-κB feedback loop modulates laryngeal cancer cell proliferation,invasion,and radioresistance[J]. Cancer Med,2018,7(5):2048-2063.
[52]
Ni J,Bucci J,Chang L,et al. Targeting MicroRNAs in Prostate Cancer Radiotherapy[J]. Theranostics,2017,7(13):3243-3259.
[53]
O'Leary VB,Smida J,Matjanovski M,et al. The circRNA interactome-innovative hallmarks of the intra- and extracellular radiation response[J]. Oncotarget,2017,8(45):78397-78409.
[54]
Chen Y,Yuan B,Wu Z,et al. Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation[J]. Gene,2017(629):35-42.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要