切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 263 -270. doi: 10.3877/cma.j.issn.1674-1366.2018.05.001

所属专题: 文献

基础研究

钛表面儿茶酚化聚电解质多层膜对蛋白质的吸附研究
黄明娣1, 王琴梅2, 何艺婷1, 池莉1, 黎艳珊1, 滕伟1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2. 510080 广州,中山大学附属第一医院卫生部辅助循环重点实验室
  • 收稿日期:2018-03-10 出版日期:2018-10-01
  • 通信作者: 滕伟
  • 基金资助:
    国家自然科学基金(81571015、81371665); 广东省自然科学基金(2015A030313087); 广东省科技计划(2016A050502012); 广州市科技计划(201707010011)

Study of the protein adsorption on the catechol functionalized polyelectrolyte multilayer film on titanium surface

Mingdi Huang1, Qinmei Wang2, Yiting He1, Li Chi1, Yanshan Li1, Wei Teng1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    2. Key Laboratory on Assisted Circulation, Ministry of Health, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2018-03-10 Published:2018-10-01
  • Corresponding author: Wei Teng
  • About author:
    Corresponding author: Teng Wei, Email:
引用本文:

黄明娣, 王琴梅, 何艺婷, 池莉, 黎艳珊, 滕伟. 钛表面儿茶酚化聚电解质多层膜对蛋白质的吸附研究[J/OL]. 中华口腔医学研究杂志(电子版), 2018, 12(05): 263-270.

Mingdi Huang, Qinmei Wang, Yiting He, Li Chi, Yanshan Li, Wei Teng. Study of the protein adsorption on the catechol functionalized polyelectrolyte multilayer film on titanium surface[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(05): 263-270.

目的

探讨钛表面儿茶酚化聚电解质多层膜对蛋白质的吸附行为,为钛种植体表面改性提供参考。

方法

根据本课题组前期建立的方法,采用脂多糖胺纳米囊泡(NPs)和3,4-二羟苯基丙酸反应制备儿茶酚接枝率为40%的儿茶酚化NPs(cNPs);采用透明质酸(HA)和多巴胺反应制备儿茶酚接枝率为10%的儿茶酚化透明质酸(cHA)。利用层层自组装技术,以cNPs为引发层、cHA/NPs为阴、阳离子聚电解质,在钛或石英表面构建含3个(cHA/NPs)双层的儿茶酚化聚电解质膜[(基底-cNPs-(cHA/NPs)3],记为cPEM。同时以NPs为引发层,构建含(HA/NPs)3的未儿茶酚化聚电解质膜(PEM)。采用红外光谱分析膜表面化学组成、激光扫描共聚焦显微镜(LSCM)检测膜表面粗糙度,Zeta电位分析仪记录膜表面Zeta电位。选取4种等电点(pI)分别小于、等于、大于生理pH 7.4的蛋白质:牛血清白蛋白(BSA,pI = 4.7)、纤连蛋白(Fn,pI = 5.8)、牛血红蛋白(BHb,pI = 6.8 ~ 7.0)、多聚赖氨酸(PLL,pI = 9.74),以其为模型蛋白,用0.15 mol/L的NaCl配制成1 mg/mL的水溶液。采用石英晶体微天平(QCM)实时动态监测膜表面蛋白吸附情况、原子力显微镜观察样品蛋白吸附前后形貌,LSCM、荧光酶标仪分别分析荧光标记蛋白在膜表面吸附情况,并测试荧光标记蛋白的吸附量。使用SPSS 20.0对数据进行单因素方差分析、SNK和LSD法进行比较,P<0.05认为差异有统计学意义。

结果

LSCM结果表明,石英表面粗糙度为(301 ± 12)nm,组装cPEM、PEM后,表面粗糙度增加,分别为(656 ± 88)、(446 ± 25)nm,组间差异具有统计学意义(F = 66.974,P<0.001)。cPEM组的红外谱图中出现儿茶酚中的苯环(νC = C)、PEM组的胺基和烷基、多糖中的糖醛酸环等特征峰,证实钛表面引入cPEM和PEM。组装过程中Zeta电位呈锯齿状交替上升,cPEM组表面电位为+22.53 mV,PEM组的表面电位为+17.36 mV。QCM结果表明,生理pH下,所有表面均基本不吸附PLL。在不同表面,BSA和BHb的吸附量cPEM组>PEM组>Ti组。原子力显微镜下可见cPEM、PEM组表面为分布均匀的水滴形海岛状结构,吸附BSA后,表面可见圆盘状结构,且cPEM组量大于PEM组,说明可能BSA在cPEM组表面的吸附量大于PEM组。采用LSCM和荧光酶标仪分析绿色荧光标记蛋白在不同表面的吸附情况,发现在不同种膜表面,同一蛋白吸附量cPEM组>PEM组>Ti组;在同一种膜表面,不同蛋白吸附量BSA>Fn>BHb。

结论

本实验研发的聚电解质多层膜对钛表面进行改性后,能提高蛋白在表面的吸附,儿茶酚化改性则进一步促进这种吸附。蛋白吸附的驱动力可能主要源于静电相互作用和儿茶酚基团对蛋白偶联捕捉作用。

Objective

To provide a theoretical basis for surface modification of titanium implants, the protein adsorption of the catechol functionalized polyelectrolyte multilayer film on titanium surface was explored.

Methods

According to the methods established in our previous study, catechol functionalized lipopolysaccharide-amine nanopolymersomes (cNPs) grafting rate of 40% was prepared by the reaction of lipopolysaccharide-amine amino nanopolymersomes (NPs) and 3, 4-dihydroxy phenyl propionic acid. The catechol functionalized hyaluronic acid (cHA) grafting rate of 10% was prepared by the reaction of hyaluronic acid (HA) and dopamine. Via layer-by-layer technique and initiated by cNPs, catechol functionalized polyelectrolyte multilayer film (cPEM) was constructed on titanium or quartz surface by using cHA and NPs, containing 3 (cHA/NPs) catechol double polyelectrolyte membrane. Similarly, initiated by NPs layer, polyelectrolyte multilayer film (PEM) without catechol was constructed on titanium or quartz surface by using hyaluronic acid (HA) and NPs. The chemical composition of the film surface was analyzed by infrared spectrum, and the surface roughness was measured by laser scanning confocal microscope (LSCM) . Zeta potential of film surface was recorded with a Zeta potential analyzer. Four kinds of proteins, namely Bovine serum albumin (BSA, pI = 4.7) , Fibronectin (Fn, pI = 5.8) , Bovine hemoglobin (BHb, pI = 6.8-7.0) and Polylysine (PLL, pI = 9.74) , were selected, as their isoelectric points (pI) were less than, equal to and greater than physiological pH 7.4, respectively. Solutions with proteins above (1 mg/mL) were prepared with 0.15 mol/L NaCl. The real-time protein adsorption process was monitored by using quartz crystal microbalance (QCM) . Atomic force microscopy was used to observe the morphology of protein before and after adsorption. The adsorption of fluorescently labeled proteins on the membrane surface was analyzed by LSCM and fluorescence microplate reader, respectively. The data were analyzed by One-Way ANOVA, SNK and LSD tests with SPSS 20.0 software package. The difference was statistically significant with P<0.05.

Results

The results of LSCM showed that the surface roughness of quartz was (301 ± 12) nm, and the surface roughness increased after assembling into cPEM and PEM, which were (656 ± 88) nm and (446 ± 25) nm, respectively. The three groups showed statistical difference (F = 66.974, P<0.001) . The infrared spectrum showed the characteristic peaks of benzene ring (νC=C) of cPEM, amino group and alkyl group in PEM, uronic acid ring in polysaccharide. It was proved that cPEM and PEM were introduced into the surface. When the Zeta potential increased in zigzag shape during the film assembly, the surface potential of cPEM was about +22.53 mV and the PEM was about +17.36 mV. QCM showed that under physiological pH, PLL was hardly adsorbed onto all surfaces. The adsorption amount of BSA and BHb on different surfaces was cPEM > PEM > Ti. Atomic force microscopy showed that the surface of cPEM and PEM groups was uniform distribution of water-drop and island-like structure. After adsorption of BSA, the disk structure was observed on the surface, and the amount of cPEM was larger than that of PEM, suggesting that the adsorption amount of BSA on cPEM surface was more than that on PEM. Observation under LSCM and the results from fluorescence microplate reader showed that the adsorption amount of protein on quartz surface increased after being catechol functionalized. On the surface of the same kind of membrane, different proteins showed the capacity of BSA > Fn > BHb.

Conclusions

Protein adsorption on titanium surface can be improved by the modification of polyelectrolyte multilayer film, which can be further promoted by catechol functionalized modification. The driving force of protein adsorption may be mainly due to electrostatic interaction and the catechol catching influence on protein coupling.

图1 钛试件聚电解质膜表面红外光谱分析
图2 石英玻璃片表面层层自组装过程中膜表面Zeta电位变化结果
表1 石英玻璃片组装膜后表面粗糙度值(nm, ± s
图3 原子力显微镜观察各组镀钛晶片表面吸附牛血清白蛋白(BSA)前后的表面形貌
图4 镀钛晶片表面吸附蛋白溶液过程中频率随时间变化曲线
图5 激光扫描共聚焦显微镜观察钛片表面吸附异硫氰酸荧光素(FITC)标记的蛋白后荧光分布图
表2 各组孔板表面吸附异硫氰酸荧光素标记蛋白的质量(μg, ± s
[1]
滕伟,黄洪章.聚电解质多层膜在钛表面改性中的应用[J].中华口腔医学杂志,2013,48(10):636-639.
[2]
Vogler EA. Protein adsorption in three dimensions[J]. Biomaterials,2012,33(5):1201-1237.
[3]
Trindade R,Albrektsson T,Tengvall P,et al. Foreign Body Reaction to Biomaterials:On Mechanisms for Buildup and Breakdown of Osseointegration[J]. Clin Implant Dent Relat Res,2016,18(1):192-203.
[4]
Waite JH. Evidence for a repeating 3,4-dihydroxyphenylalanine- and hydroxyproline-containing decapeptide in the adhesive protein of the mussel,Mytilus edulis L[J]. J Biol Chem,1983,258(5):2911-2915.
[5]
Lee H,Lee Y,Statz AR,et al. Substrate-Independent Layer-by-Layer Assembly by Using Mussel-Adhesive-Inspired Polymers[J]. Adv Mater,2008,20(9):1619-1623.
[6]
滕伟,王琴梅,陈盈,等.钛表面脂多糖胺纳米囊泡-透明质酸聚电解质多层膜的构建及细胞生物学效应[J].中华口腔医学杂志,2014,49(12):758-762.
[7]
Teng W,Wang Q,Chen Y,et al. Controllably local gene delivery mediated by polyelectrolyte multilayer films assembled from gene-loaded nanopolymersomes and hyaluronic acid[J]. Int J Nanomedicine,2014(9):5013-5024.
[8]
王琼,滕伟,王琴梅,等.钛种植体表面聚电解质多层膜刚度对变形链球菌黏附的影响[J].中华口腔医学杂志,2016,51(3):166-171.
[9]
Huang Z,Teng W,Liu L,et al. Efficient cytosolic delivery mediated by polymersomes facilely prepared from a degradable,amphiphilic,and amphoteric copolymer[J]. Nanotechnology,2013,24(26):265104.
[10]
Rivera-Chacon DM,Alvarado-Velez M,Acevedo-Morantes CY,et al. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces[J]. J Biomed Nanotechnol,2013,9(6):1092-1097.
[11]
Park JY,Kim JS,Nam YS. Mussel-inspired modification of dextran for protein-resistant coatings of titanium oxide[J]. Carbohydr Polym,2013,97(2):753-757.
[12]
Bhola R,Su F,Krull CE. Functionalization of titanium based metallic biomaterials for implant applications[J]. J Mater Sci Mater Med,2011,22(5):1147-1159.
[13]
Lieder R,Darai M,Thor MB,et al. In vitro bioactivity of different degree of deacetylation chitosan,a potential coating material for titanium implants[J]. J Biomed Mater Res A,2012,100(12):3392-3399.
[14]
Kawashita M,Hayashi J,Kudo TA,et al. MC3T3-E1 and RAW264.7 cell response to hydroxyapatite and alpha-type alumina adsorbed with bovine serum albumin[J]. J Biomed Mater Res A,2014,102(6):1880-1886.
[15]
Jimbo R,Ivarsson M,Koskela A,et al. Protein adsorption to surface chemistry and crystal structure modification of titanium surfaces[J]. J Oral Maxillofac Res,2010,1(3):e3.
[16]
Pegueroles M,Tonda-Turo C,Planell JA,et al. Adsorption of fibronectin,fibrinogen,and albumin on TiO2:time-resolved kinetics,structural changes,and competition study[J]. Biointerphases,2012,7(1-4):48.
[17]
Urquia Edreira ER,Wolke JG,Aldosari AA,et al. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance[J]. J Biomed Mater Res A,2015,103(1):300-310.
[18]
Surmeneva MA,Kleinhans C,Vacun G,et al. Nano-hydroxyapatite-coated metal-ceramic composite of iron-tricalcium phosphate:Improving the surface wettability,adhesion and proliferation of mesenchymal stem cells in vitro[J]. Colloids Surf B Biointerfaces,2015(135):386-393.
[19]
Alenezi A,Naito Y,Andersson M,et al. Characteristics of 2 Different Commercially Available Implants with or without Nanotopography[J]. Int J Dent,2013(2013):769768.
[20]
Hannig M,Joiner A. The structure,function and properties of the acquired pellicle[J]. Monogr Oral Sci,2006(19):29-64.
[21]
Yoshida E,Hayakawa T. Adsorption study of pellicle proteins to gold,silica and titanium by quartz crystal microbalance method[J]. Dent Mater J,2013,32(6):883-887.
[22]
Zhu X,Guo S,He T,et al. Engineered,Robust Polyelectrolyte Multilayers by Precise Control of Surface Potential for Designer Protein,Cell,and Bacteria Adsorption[J]. Langmuir,2016,32(5):1338-1346.
[23]
Kusakawa Y,Yoshida E,Hayakawa T. Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method[J]. Biomed Res Int,2017(2017):1521593.
[24]
Guo S,Janczewski D,Zhu X,et al. Surface charge control for zwitterionic polymer brushes:Tailoring surface properties to antifouling applications[J]. J Colloid Interface Sci,2015(452):43-53.
[25]
Benbow NL,Webber JL,Karpiniec S,et al. The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces:protein adsorption and protein-polysaccharide complexation/stripping on natural polysaccharide films on solid supports[J]. Phys Chem Chem Phys,2017,19(35):23790-23801.
[1] 陈天, 李歆, 刘开政, 邓永强. 口腔钛种植体成骨性能的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 200-205.
[2] 黄石头, 魏洪波, 李德华. 三维打印钛种植体性能及临床应用的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 1-9.
[3] 关山, 张冰, 张开通, 王宇, 岳朝森, 程苒. 中国乳腺癌术后假体乳房重建补片材料应用现状[J/OL]. 中华普外科手术学杂志(电子版), 2022, 16(02): 123-126.
[4] 刘刚, 袁新普, 张朝军, 张炎, 黄云, 吴晓宇, 田君. 钛夹辅助结肠镜定位用于结直肠癌手术的疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2021, 15(06): 625-628.
[5] 冯伟楼, 张堃, 朱养均, 年跃文, 冯东旭, 黄伟, 蔡枭. 改良钛缆系统结合肩锁韧带修复治疗肩锁关节脱位[J/OL]. 中华肩肘外科电子杂志, 2020, 08(03): 203-208.
[6] 冷昭富, 汪永新. 儿童去骨瓣减压术后颅骨成形术的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(05): 313-317.
[7] 赵卫良, 李娟, 郑永, 谢森, 缪国专. 颅骨修补术后钛网外露的临床特点及手术疗效[J/OL]. 中华神经创伤外科电子杂志, 2021, 07(05): 297-300.
[8] 秦立宁, 许娜, 董静, 董栋, 林源. 新型H形解剖钛板治疗累及后壁/后柱髋臼骨折的疗效分析[J/OL]. 中华老年骨科与康复电子杂志, 2021, 07(03): 147-151.
[9] 袁杰, 武孝刚, 王金标, 刘璐, 王春琳. 3D打印聚醚醚酮材料在颅脑损伤后颅骨成形术中的应用疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 274-278.
[10] 赵德枭, 郭永坤, 王新军, 刘婉清, 陈冠岐, 毛建超, 单峤. 聚醚醚酮与钛网修补颅骨缺损的临床应用对比分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 362-365.
[11] 刘振华, 岑水忠, 叶伟佳, 李建君, 曾炜波, 靳安民, 邱素均. 传统cage-钛板与颈椎桥形锁定融合器结合颈椎前路减压融合内固定术治疗单节段脊髓型颈椎病的效果比较[J/OL]. 中华临床医师杂志(电子版), 2022, 16(03): 213-219.
[12] 俞春波, 周长松, 黄亮, 严卫忠, 李东. 内镜下猪离体大肠黏膜缝合术的实验研究[J/OL]. 中华临床医师杂志(电子版), 2021, 15(02): 113-117.
[13] 蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J/OL]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.
[14] 段林, 何艳艳, 李天晓, 陈松, 贺迎坤, 吴海刚. 镍钛合金支架表面修饰进展[J/OL]. 中华介入放射学电子杂志, 2022, 10(01): 83-87.
[15] 郑武俊, 俞晓军, 鲍斌. CT定位栅术前精准定位联合胸腔镜隧道式骨性胸廓前间隙钛板内固定术在肋骨骨折中的应用[J/OL]. 中华胸部外科电子杂志, 2021, 08(04): 264-268.
阅读次数
全文


摘要