切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (04) : 205 -212. doi: 10.3877/cma.j.issn.1674-1366.2018.04.002

所属专题: 文献

基础研究

激光选区熔化钛表面不同形貌对口腔链球菌黏附的影响
胡修诚1, 邓飞龙1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2018-03-05 出版日期:2018-08-01
  • 通信作者: 邓飞龙
  • 基金资助:
    广州市科技计划(201604020147)

Influence of different titanium surface topographies caused by selective laser melting on the adhesion of oral Streptococcus

Xiucheng Hu1, Feilong Deng1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2018-03-05 Published:2018-08-01
  • Corresponding author: Feilong Deng
  • About author:
    Corresponding author: Deng Feilong, Email:
引用本文:

胡修诚, 邓飞龙. 激光选区熔化钛表面不同形貌对口腔链球菌黏附的影响[J]. 中华口腔医学研究杂志(电子版), 2018, 12(04): 205-212.

Xiucheng Hu, Feilong Deng. Influence of different titanium surface topographies caused by selective laser melting on the adhesion of oral Streptococcus[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(04): 205-212.

目的

探讨激光选区熔化(SLM)制造的钛试件表面不同形貌对变异链球菌和血链球菌黏附的影响。

方法

通过喷砂、碱处理和阳极氧化在SLM钛片表面制备纳米网(NN组)和纳米管(NT组)表面形貌,并与喷砂SLM钛片(SB组)及未处理SLM钛片(SLM组)进行对比,通过扫描电镜、表面形貌分析仪、表面接触角测试仪对各组钛片表面形貌、粗糙度和亲水性进行表征。将各组钛片与变异链球菌和血链球菌共同培养24 h。通过菌落形成单位计数及细菌荧光染色分析比较不同表面形貌SLM钛片上2种细菌在的黏附活、死菌量及活死菌总量,进而评价SLM钛表面不同形貌对口腔链球菌黏附的影响。

结果

SLM组表面为波浪状起伏微米形貌,SB组表面为沟嵴状起伏微米形貌;NN组表面和NT组表面形成了纳米网和纳米管结构。经表面处理的SB组、NN组和NT组较SLM组表面粗糙度降低(RaSB= 2.87 μm,RaNN= 2.90 μm,RaNT= 2.65 μm,RaSLM= 7.19 μm),亲水性提高(SLM组、SB组、NN组和NT组表面水接触角分别为76.90°、64.47°、23.17°和44.13°)。菌落形成单位计数结果显示,NT组表面变异链球菌和血链球菌的细菌密度为661.29和668.45 CFU/mm2,为各组最低,且与其余组差异具有统计学意义(P<0.05);细菌荧光染色结果显示,NT组表面变异链球菌和血链球菌的活死菌总平均荧光强度为281.17和303.58,亦为各组最低,且与其余组差异具有统计学意义(P<0.05);NN组表面变异链球菌和血链球菌死菌比例为0.47和0.62,均显著高于其余各组(P<0.05)。

结论

在SLM起伏微米形貌基底上,阳极氧化纳米管具有较强的抗细菌黏附性能,碱处理纳米网抗细菌黏附性能弱于阳极氧化纳米管,但具有一定杀菌性能。

Objective

To investigate the influence of different titanium surface topographies caused by selective laser melting (SLM) on the adhesion of oral Streptococcus.

Methods

Nanonet (NN) and nanotube (NT) topographies were constructed by sandblasting, anodization and alkali treatment on SLM titanium discs. These two groups were compared with sandblasting (SB) and untreated SLM titanium discs. Surface topography, roughness and hydrophilicity were analyzed with a scanning electron microscope, a profilometer and a contact angle measuring device. To evaluate the adhesion of oral Streptococcus on different surface topographies on SLM titanium, Streptococcus mutans (S.mutans) and Streptococcus sanguinis (S.sanguinis) were incubating on the sample surfaces for 24 h. Bacteria colony counting and staining were conducted to check the amount of live and dead bacteria as well as the total amount of bacteria adhered to the surfaces.

Results

The SLM samples showed a microrough waving surface, while SB samples showed microrough waving surface with grooves and ridges. Nanotubes and nanonets were formed on the surfaces of NT and NN samples. The surface roughness of SB, NN and NT samples was lower than that of SLM samples (RaSB= 2.87 μm, RaNN= 2.90 μm, RaNT= 2.65 μm, RaSLM= 7.19 μm) , while their hydrophilicity was higher than that of SLM samples (the water contact angles of SLM, SB, NN and NT samples were 76.90°, 64.47°, 23.17°, 44.13°, respectively) . The results of bacteria colony counting showed that NT samples had the lowest bacteria density of both S.mutans (661.29 CFU/mm2) and S.sanguinis (668.45 CFU/mm2, P<0.05) . The results of bacteria staining also showed that NT samples had the lowest total mean fluorescence intensity (P<0.05) , which were 661.29 CFU/mm2 for S.mutans and 668.45 CFU/mm2 for S.sanguinis. The NN samples had the highest proportion of dead bacteria (P<0.05) , which were 0.47 for S.mutans and 0.62 for S.sanguinis.

Conclusions

The anodized nanotubes on microrough SLM substrate exhibited preferable anti-adherence efficacy on oral Streptococcus. The anti-adherence efficacy of alkali treated nanonets on microrough SLM substrate was inferior to anodized nanotubes. However, it possessed certain bactericidal capability.

图1 本研究各组钛片在扫描电镜下的表面形貌
图2 各组样品表面水接触角
表1 各组钛片的表面粗糙度及亲水性( ± s
图3 各组样品表面变异链球菌和血链球菌的黏附形态
图4 各组钛片表面黏附细菌密度
图5 各组钛片表面的活死菌黏附情况(荧光)
图6 各组钛片表面的黏附细菌平均荧光强度
[1]
Pjetursson BE,Thoma D,Jung R, et al. A systematic review of the survival and complication rates of implant-supported fixed dental prostheses(FDPs)after a mean observation period of at least 5 years[J]. Clin Oral Implants Res, 2012(23 Suppl 6):22-38.
[2]
Hof M,Tepper G,Semo B, et al. Patients′ perspectives on dental implant and bone graft surgery:questionnaire-based interview survey[J]. Clin Oral Implants Res, 2014, 25(1):42-45.
[3]
Chen J,Zhang Z,Chen X, et al. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology[J]. J Prosthet Dent, 2014, 112(5):1088-1095.e1.
[4]
Torabi K,Farjood E,Hamedani S. Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature[J]. J Dent(Shiraz), 2015, 16(1):1-9.
[5]
Xiao D,Yang Y,Su X, et al. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials[J]. Biomed Mater Eng, 2013, 23(5):433-445.
[6]
de Wild M,Schumacher R,Mayer K, et al. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting:a histological and micro computed tomography study in the rabbit[J]. Tissue Eng Part A, 2013, 19(23-24):2645-2654.
[7]
Shaoki A,Xu JY,Sun H, et al. Osseointegration of three- dimensional designed titanium implants manufactured by selective laser melting[J]. Biofabrication, 2016, 8(4):045014.
[8]
Tsukanaka M,Fujibayashi S,Takemoto M, et al. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology[J]. Dent Mater J, 2016, 35(1):118-125.
[9]
Xu JY,Chen XS,Zhang CY, et al. Improved bioactivity of selective laser melting titanium:Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation[J]. Mater Sci Eng C Mater Biol Appl, 2016(68):229-240.
[10]
Mumtaz K,Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting[J]. Rapid Prototyping J, 2009, 15(2):96-103.
[11]
Dawood A,Marti Marti B,Sauret-Jackson V, et al. 3D printing in dentistry[J]. Br Dent J, 2015, 219(11):521-529.
[12]
Derks J,Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology[J]. J Clin Periodontol, 2015, 42(S16):S158-S171.
[13]
Smeets R,Henningsen A,Jung O, et al. Definition, etiology, prevention and treatment of peri-implantitis--a review[J]. Head Face Med, 2014, 10(1):1-13.
[14]
Han A,Tsoi JKH,Rodrigues FP, et al. Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors[J]. Int J Adhes Adhes, 2016(69):58-71.
[15]
Pelt AWJV,Mei HCVD,Busscher HJ, et al. Surface free energies of oral streptococci[J]. Fems Microbiology Letters, 1984, 25(2- 3):279-282.
[16]
Narendrakumar K,Kulkarni M,Addison O, et al. Adherence of oral streptococci to nanostructured titanium surfaces[J]. Dent Mater, 2015, 31(12):1460-1468.
[17]
Ercan B,Taylor E,Alpaslan E, et al. Diameter of titanium nanotubes influences anti-bacterial efficacy[J]. Nanotechnology, 2011, 22(29):295102.
[18]
Peng Z,Ni J,Zheng K, et al. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion[J]. Int J Nanomedicine, 2013(8):3093-3105.
[19]
Kelleher SM,Habimana O,Lawler J, et al. Cicada Wing Surface Topography:An Investigation into the Bactericidal Properties of Nanostructural Features[J]. Acs Appl Mater Interfaces, 2016, 8(24):14966-14974.
[20]
Bandara CD,Singh S,Afara IO, et al. Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli[J]. Acs Appl Mater Interfaces, 2017, 9(8):6746-6760.
[21]
Watson GS,Green DW,Schwarzkopf L, et al. A gecko skin micro/nano structure - A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface[J]. Acta Biomater, 2015(21):109-122.
[22]
Elbourne A,Crawford RJ,Ivanova EP. Nano-structured antimicrobial surfaces:From nature to synthetic analogues[J]. J Colloid Interface Sci, 2017(508):603-616.
[1] 黄石头, 魏洪波, 李德华. 三维打印钛种植体性能及临床应用的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 1-9.
[2] 关山, 张冰, 张开通, 王宇, 岳朝森, 程苒. 中国乳腺癌术后假体乳房重建补片材料应用现状[J]. 中华普外科手术学杂志(电子版), 2022, 16(02): 123-126.
[3] 刘刚, 袁新普, 张朝军, 张炎, 黄云, 吴晓宇, 田君. 钛夹辅助结肠镜定位用于结直肠癌手术的疗效及安全性分析[J]. 中华普外科手术学杂志(电子版), 2021, 15(06): 625-628.
[4] 冯伟楼, 张堃, 朱养均, 年跃文, 冯东旭, 黄伟, 蔡枭. 改良钛缆系统结合肩锁韧带修复治疗肩锁关节脱位[J]. 中华肩肘外科电子杂志, 2020, 08(03): 203-208.
[5] 冷昭富, 汪永新. 儿童去骨瓣减压术后颅骨成形术的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 313-317.
[6] 赵卫良, 李娟, 郑永, 谢森, 缪国专. 颅骨修补术后钛网外露的临床特点及手术疗效[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 297-300.
[7] 秦立宁, 许娜, 董静, 董栋, 林源. 新型H形解剖钛板治疗累及后壁/后柱髋臼骨折的疗效分析[J]. 中华老年骨科与康复电子杂志, 2021, 07(03): 147-151.
[8] 袁杰, 武孝刚, 王金标, 刘璐, 王春琳. 3D打印聚醚醚酮材料在颅脑损伤后颅骨成形术中的应用疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 274-278.
[9] 赵德枭, 郭永坤, 王新军, 刘婉清, 陈冠岐, 毛建超, 单峤. 聚醚醚酮与钛网修补颅骨缺损的临床应用对比分析[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 362-365.
[10] 刘振华, 岑水忠, 叶伟佳, 李建君, 曾炜波, 靳安民, 邱素均. 传统cage-钛板与颈椎桥形锁定融合器结合颈椎前路减压融合内固定术治疗单节段脊髓型颈椎病的效果比较[J]. 中华临床医师杂志(电子版), 2022, 16(03): 213-219.
[11] 俞春波, 周长松, 黄亮, 严卫忠, 李东. 内镜下猪离体大肠黏膜缝合术的实验研究[J]. 中华临床医师杂志(电子版), 2021, 15(02): 113-117.
[12] 朱元东, 施言, 谢欣城, 周丹, 李晓, 金指望, 朱群, 吴乾能, 章復龙, 方蕾, 陈玲玲. 内镜下钛铗联合组织胶治疗中重度胃底静脉曲张的临床效果[J]. 中华临床医师杂志(电子版), 2019, 13(10): 731-735.
[13] 蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.
[14] 段林, 何艳艳, 李天晓, 陈松, 贺迎坤, 吴海刚. 镍钛合金支架表面修饰进展[J]. 中华介入放射学电子杂志, 2022, 10(01): 83-87.
[15] 郑武俊, 俞晓军, 鲍斌. CT定位栅术前精准定位联合胸腔镜隧道式骨性胸廓前间隙钛板内固定术在肋骨骨折中的应用[J]. 中华胸部外科电子杂志, 2021, 08(04): 264-268.
阅读次数
全文


摘要