切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (05) : 352 -355. doi: 10.3877/cma.j.issn.1674-1366.2016.05.010

所属专题: 口腔医学 文献

综述

靶向变异链球菌谷氨酸消旋酶的研究进展
张剑英1, 凌均棨2,()   
  1. 1. 410008 长沙,中南大学湘雅口腔医院牙体牙髓病科
    2. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2016-09-01 出版日期:2016-10-01
  • 通信作者: 凌均棨
  • 基金资助:
    国家自然科学基金(81371132); 广东省科技计划(2013B021800138)

Research progress on the targeting of glutamate racemase of Streptococcus mutans

Jianying Zhang1, Junqi Ling2,()   

  1. 1. Department of Operative Dentistry and Endodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
    2. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2016-09-01 Published:2016-10-01
  • Corresponding author: Junqi Ling
  • About author:
    Corresponding author: Ling Junqi, Email:
引用本文:

张剑英, 凌均棨. 靶向变异链球菌谷氨酸消旋酶的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2016, 10(05): 352-355.

Jianying Zhang, Junqi Ling. Research progress on the targeting of glutamate racemase of Streptococcus mutans[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(05): 352-355.

变异链球菌是龋病发生的始动因子,与人类龋病密切相关。抑制变异链球菌致龋毒力相关的基因和酶,可影响细菌毒力因子的产生,降低细菌的致龋能力,有助于龋病的预防和治疗。谷氨酸消旋酶是一类不需辅助因子,专一催化L型和D型谷氨酸之间相互转化的酶,为细胞壁肽聚糖合成提供D-谷氨酸,是细菌生长的关键酶,目前已经成为研究和开发新型抗菌药物的新靶标。特异性靶向变异链球菌谷氨酸消旋酶,有望为龋病防治提供新的思路和方法。本文对谷氨酸消旋酶的分类、结构特征、酶抑制剂及基因遗传学等研究进展进行系统阐述,为进一步研究谷氨酸消旋酶与变异链球菌致龋毒力的关系,研发抗龋药物候选靶标提供理论基础。

Streptococcus mutans (S.mutans) is widely considered to be the major etiological factor responsible for dental caries in humans. Strategies selectively inhibiting the specific virulence factors associated with its cariogenicity are promising. Glutamate racemase (MurI) is a cofactor-independent enzyme that catalyzes the interconversion of L-glutamate to D-glutamate, one of the essential amino acids present in the peptidoglycan. As the indispensable enzyme in peptidoglycan biosynthesis, MurI has therefore been an attractive target for therapeutic interventions. In this review, the classifications, structures, inhibitors and genetic studies of MurI are systematically summarized. A comprehensive understanding of the relationship between MurI and cariogenic virulence of S.mutans can provide an important theoretical basis for potential therapeutic applications of dental caries.

[1]
Banas JA. Virulence properties of Streptococcus mutans[J]. Front Biosci,2004(9):1267-1277.
[2]
凌均棨.变形链球菌感受态形成的基因调控网络[J].中华口腔医学杂志,2015,50(6):342-345.
[3]
Bugg TD, Braddick D, Dowson CG,et al. Bacterial cell wall assembly:still an attractive antibacterial target[J]. Trends Biotechnol,2011,29(4):167-173.
[4]
Barreteau H, Kovac A, Boniface A,et al. Cytoplasmic steps of peptidoglycan biosynthesis[J]. FEMS Microbiol Rev,2008,32(2):168-207.
[5]
Cava F, Lam H, de Pedro MA,et al. Emerging knowledge of regulatory rols of D-amino acids in bacteria[J]. Cell Mol Life Sci,2011,68(5):817-813.
[6]
Ayengar P, Roberts E. Utilization of D-glutamic acid by Lactobacillus arabinosus:glutamic racemase[J]. J Biol Chem,1952,197(1):453-460.
[7]
Balikó G, Venetianer P. An Escherichia coli gene in search of a function:phenotypic effects of the gene recently identified as murI[J]. J Bacteriol,1993,175(20):6571-6577.
[8]
Lundqvist T, Fisher SL, Kern G,et al. Exploitation of structural and regulatory diversity in glutamate racemases[J]. Nature,2007,447(7146):817-822.
[9]
Kim KH, Bong YJ, Park JK,et al. Structural basis for glutamate racemase inhibition[J]. J Mol Biol,2007,372(2):434-443.
[10]
Kim WC, Rhee HI, Park BK,et al. Isolation of peptide ligands that inhibit glutamate racemase activity from a random phage display library[J]. J Biomol Screen,2000,5(6):435-440.
[11]
Kimura K, Tran LS, Itoh Y. Roles and regulation of the glutamate racemase isogenes,racE and yrpC,in Bacillus subtilis[J]. Microbiology,2004,150(Pt 9):2911-2920.
[12]
Sengupta S, Nagaraja V. Inhibition of DNA gyrase activity by Mycobacterium smegmatis MurI[J]. FEMS Microbiol Lett,2008,279(1):40-47.
[13]
Fisher SL. Glutamate racemase as a target for drug discovery[J]. Microbial Biotechnology,2008,1(5):345-360.
[14]
Pucci MJ, Thanassi JA, Ho HT,et al. Staphylococcus haemolyticus contains two D-glutamic acid biosynthetic activities,a glutamate racemase and a D-amino acid transaminase[J]. J Bacteriol,1995,177(2):336-342.
[15]
de Jonge BL, Kutschke A, Newman JV,et al. Pyridodiazepine amines are selective therapeutic agents for Helicobacter pylori by suppressing growth through inhibition of glutamate racemase but are predicted to require continuous elevated levels in plasma to achieve clinical efficacy[J]. Antimicrob Agents Chemother,2015,59(4):2337-2342.
[16]
Gallo KA, Knowles J. Purification,cloning,and cofactor independence of glutamate racemase from Lactobacillus[J]. Biochemistry,1993,32(15):3981-3990.
[17]
Nakajima N, Tanizawa K, Tanaka H,et al. Cloning and expression in Escherichia coli of the glutamate racemase gene from Pediococcus pentosaceus[J]. Agric Biol Chem,1986,50(11):2823-2830.
[18]
Bhagavan NV. Medical biochemistry. Chapter 6:Enzymes I:General Properties,Kinetics,and Inhibition[M]. 4th ed. Academic Press,2001:85-108.
[19]
Ashiuchi M, Yoshimura T, Esaki N,et al. Inactivation of glutamate racemase of Pediococcus pentosaceus with L-serine-O-sulfate[J]. Biosci Biotech Biochem,1993,57(11):1978-1979.
[20]
Glavas S, Tanner ME. The inhibition of glutamate racemase by D-N-hydroxylglutamate[J]. Bioorg Med Chem Let,1997,7(17):2265-2270.
[21]
Tanner ME, Miao S. The synthesis and stability of aziridino-glutamate,an irreversible inhibitor of glutamate racemase[J]. Tet Let,1994,35(24):4073-4076.
[22]
de Jonge BL, Kutschke A, Uria-Nickelsen M,et al. Pyrazolopyrimidinediones are selective agents for Helicobacter pylori that suppress growth through inhibition of glutamate racemase(MurI)[J]. Antimicrob Agents Chemother,2009,53(8):3331-3336.
[23]
Choi SY, Esaki N, Ashiuchi M,et al. Bacterial glutamate racemase has high sequence similarity with myoglobins and forms an equimolar inactive complex with hemin[J]. Proc Natl Acad Sci USA,1994,91(21):10144-10147.
[24]
Corrigan RM, Abbott JC, Burhenne H,et al. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress[J]. PLoS Pathog,2011,7(9):e1002217.
[25]
Doublet P, van Heijenoort J, Bohin JP,et al. The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity[J]. J Bacteriol,1993,175(10):2970-2979.
[26]
Morayya S, Awasthy D, Yadav R,et al. Revisiting the essentiality of glutamate racemase in Mycobacterium tuberculosis[J]. Gene,2015,555(2):269-276.
[27]
Li Y, Mortuza R, Milligan DL,et al. Investigation of the essentiality of glutamate racemase in Mycobacterium smegmatis[J]. J Bacteriol,2014,196(24):4239-4244.
[28]
Oh SY, Richter SG, Missiakas DM,et al. Glutamate racemase mutants of Bacillus anthracis[J]. J Bacteriol,2015,197(11):1854-1861.
[29]
Zhang J, Liu J, Ling J,et al. Inactivation of glutamate racemase(MurI)eliminates virulence in Streptococcus mutans[J]. Microbiol Res,2016(186-187):1-8.
[30]
樊明文.牙体牙髓病学[M]. 4版.北京:人民卫生出版社,2012:18.
[1] 曾德荣, 马琳, 李星瀚, 胡伟涛, 刘琦, 邓永强. 多聚ADP核糖聚合酶1在口腔鳞状细胞癌精准诊疗中的作用机制及转化价值[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 269-275.
[2] 李星月, 董伟, 徐永波, 张文法, 胡晓璇, 钟玉绪, 褚海波. 浅表血栓性静脉炎管壁基质金属蛋白酶及其抑制剂表达研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 338-343.
[3] 汤宏涛, 何坤. 中晚期肝细胞癌介入治疗的进展及前景[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 305-308.
[4] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[5] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[6] 郑琪, 马婕群, 张彦兵, 廖子君, 张锐. EPHA5突变预测肺腺癌免疫检查点抑制剂治疗预后的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 548-552.
[7] 赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.
[8] 胡志伟, 吴继敏, 邓昌荣, 战秀岚, 纪涛, 王峰, 田书瑞, 陈冬, 张玉, 刘健男, 宋庆. 抗反流黏膜套扎治疗顽固性胃食管反流病[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 227-233.
[9] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[10] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[11] 陆思楠, 苏同荣, 张启逸. 索凡替尼转化治疗胰腺神经内分泌肿瘤肝转移一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 526-530.
[12] 施麟宵, 洪兰兰, 阳柳, 芶碧珍, 刘畅, 吴欣. 钠-葡萄糖协同转运蛋白2 抑制剂治疗原发性膜性肾病的疗效及其对Th1/Th2 的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 261-267.
[13] 马豆豆, 丁艳, 古今, 王丽芳, 石连杰. 以发热为首发表现的强直性脊柱炎合并潜伏性结核感染一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 791-794.
[14] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[15] 叶禾清, 李杰, 张玉元, 胡炉淇, 吴白露, 李鑫, 叶书文, 李一帆, 高玥, 詹鹏超, 吕培杰, 李臻. 载药微球化疗栓塞联合多纳非尼及PD-1治疗中晚期大肝癌的疗效分析[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 212-216.
阅读次数
全文


摘要