切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (02) : 151 -154. doi: 10.3877/cma.j.issn.1674-1366.2016.02.014

所属专题: 口腔医学 文献

综述

石墨烯在口腔种植中的应用前景
魏常博1, 余东升1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2015-11-18 出版日期:2016-04-01
  • 通信作者: 余东升
  • 基金资助:
    国家自然科学基金(81272554、81472526); 广东省自然科学基金(2014A030313126)

The application prospects of graphene in dental implantation

Changbo Wei1, Dongsheng Yu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2015-11-18 Published:2016-04-01
  • Corresponding author: Dongsheng Yu
  • About author:
    Corresponding author: Yu Dongsheng, Email:
引用本文:

魏常博, 余东升. 石墨烯在口腔种植中的应用前景[J]. 中华口腔医学研究杂志(电子版), 2016, 10(02): 151-154.

Changbo Wei, Dongsheng Yu. The application prospects of graphene in dental implantation[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(02): 151-154.

石墨烯拥有独特的结构和优异的性能,被誉为"黑金" ,是21世纪当之无愧的"新材料之王" ,有望广泛应用于生物医学领域,如组织工程、药物运输、基因载体、生物成像等。石墨烯在口腔医学领域具有良好的应用前景,本文就其生物相容性和细胞毒性、抗菌性能、促进成骨分化以及优异的机械性能,在口腔种植方面的相关研究作一综述。

Graphene, honored as ′black gold′, is worthy of ′the king of new materials′ in 21st century. Due to its unique structure and excellent properties, it is expected to be widely used in biomedical fields such as tissue engineering, drug delivery, gene loading and biological imaging. Graphene has vast application prospects in the field of oral medicine. The properties including biocompatibility, cytotoxicity, antibacterial activity, promoting osteogenic differentiation and the unique mechanism are discussed. This review elaborates the research on dental implantation.

[1]
Novoselov KS, Geim AK, Morozov SV,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[2]
Singh V, Joung D, Zhai L,et al. Graphene based materials:Past,present and future[J]. Prog Mater Sci,2011,56(8):1178-1271.
[3]
Lee C, Wei X, Kysar JW,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
[4]
Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Phys Rev Lett,2000,84(20):4613-4616.
[5]
Freitag M, Steiner M, Martin Y,et al. Energy dissipation in graphene field-effect transistors[J]. Nano Lett,2009,9(5):1883-1888.
[6]
Kim S, Ihm J, Choi HJ,et al. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide[J]. Phys Rev Lett,2008,100(17):176802.
[7]
Nair RR, Blake P, Grigorenko AN,et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308.
[8]
Zhang L, Zhang F, Yang X,et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Sci Rep,2013,3:1408.
[9]
Geim AK, Novoselov KS. The rise of graphene[J]. Nat Mater,2007,6(3):183-191.
[10]
Zhang Y, Ali SF, Dervishi E,et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells[J]. ACS Nano,2010,4(6):3181-3186.
[11]
Rosa V, Della BA, Cavalcanti BN,et al. Tissue engineering:from research to dental clinics[J]. Dent Mater,2012,28(4):341-348.
[12]
Lee WC, Lim CH, Shi H,et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano,2011,5(9):7334-7341.
[13]
Elkhenany H, Amelse L, Lafont A,et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells:potential for bone tissue engineering[J]. J Appl Toxicol,2015,35(4):367-374.
[14]
Sasidharan A, Panchakarla LS, Chandran P,et al. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene[J]. Nanoscale,2011,3(6):2461-2464.
[15]
Yang K, Wan J, Zhang S,et al. In vivo pharmacokinetics,long-term biodistribution,and toxicology of PEGylated graphene in mice[J]. ACS Nano,2011,5(1):516-522.
[16]
Hu W, Peng C, Luo W,et al. Graphene-based antibacterial paper[J]. ACS Nano,2010,4(7):4317-4323.
[17]
Liu S, Zeng TH, Hofmann M,et al. Antibacterial activity of graphite,graphite oxide,graphene oxide,and reduced graphene oxide:membrane and oxidative stress[J]. ACS Nano,2011,5(9):6971-6980.
[18]
Tu Y, Lv M, Xiu P,et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nat Nanotechnol,2013,8(12):968.
[19]
Kulshrestha S, Khan S, Meena R,et al. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans[J]. Biofouling,2014,30(10):1281-1294.
[20]
Mombelli A. Microbiology and antimicrobial therapy of peri-implantitis[J]. Periodontol 2000,2002(28):177-189.
[21]
Quirynen M, De Soete M, van Steenberghe D. Infectious risks for oral implants:a review of the literature[J]. Clin Oral Implants Res,2002,13(1):1-19.
[22]
Branemark PI. Osseointegration and its experimental background[J]. J Prosthet Dent,1983,50(3):399-410.
[23]
Nayak TR, Andersen H, Makam VS,et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells[J]. ACS Nano,2011,5(6):4670-4678.
[24]
Rosa V, Zhang Z, Grande RH,et al. Dental pulp tissue engineering in full-length human root canals[J]. J Dent Res,2013,92(11):970-975.
[25]
Qi W, Yuan W, Yan J,et al. Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films[J]. J Mater Chem B,2014,2(33):5461-5467.
[26]
Kalbacova M, Broz A, Kong J,et al. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells[J]. Carbon,2010,48(15):4323-4329.
[27]
Alzhavan O, Ghaderi E, Shahsavar M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells[J]. Carbon,2013(59):200-211.
[28]
Ryoo HM, Hoffmann HM, Beumer T,et al. Stage-specific expression of Dlx-5 during osteoblast differentiation:Involvement in regulation of osteocalcin gene expression[J]. Mol Endocrinol,1997,11(11):1681-1694.
[29]
Kim J, Kim Y, Kim Y,et al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells[J]. J Mater Chem B,2013,1(7):933-938.
[30]
Xie Y, Li H, Zhang C,et al. Graphene-reinforced calcium silicate coatings for load-bearing implants[J]. Biomed Mater,2014,9(2):025009.
[31]
Tatavarty R, Ding H, Lu G,et al. Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide-calcium phosphate nanocomposites[J]. Chem Commun,2014,50(62):8484-8487.
[32]
Gao C, Liu T, Shuai C,et al. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold:mechanical and biological performance[J]. Sci Rep,2014,4:4712.
[33]
Porwal H, Grasso S, Cordero-Arias L,et al. Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites[J]. J Mater Sci Mater Med,2014,25(6):1403-1413.
[34]
Loh KP, Bao Q, Ang PK,et al. The chemistry of graphene[J]. J Mater Chem,2010,20(12):2277-2289.
[35]
Pei S, Cheng H. The reduction of graphene oxide[J]. Carbon,2012,50(9):3210-3228.
[36]
Jiayu L, Yu-Shi H, Chi C,et al. Self-supporting graphene hydrogel film as an experimental platform to evaluate the potential of graphene for bone regeneration[J]. Adv Funct Mater,2013,23(28):3494-3502.
[37]
Kang SW, La WG, Kang JM,et al. Bone morphogenetic protein-2 enhances bone regeneration mediated by transplantation of osteogenically undifferentiated bone marrow-derived mesenchymal stem cells[J]. Biotechnol Lett,2008,30(7):1163-1168.
[38]
Depan D, Girase B, Shah JS,et al. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds[J]. Acta Biomater,2011,7(9):3432-3445.
[39]
Li M, Liu Q, Jia Z,et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications[J]. Carbon,2014,67:185-197.
[40]
La WG, Park S, Yoon HH,et al. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small,2013,9(23):4051-4060.
[41]
La WG, Kang SW, Yang HS,et al. The efficacy of bone morphogenetic protein-2 depends on its mode of delivery[J]. Artif Organs,2010,34(12):1150-1153.
[42]
Jemt T, Lekholm U. Oral implant treatment in posterior partially edentulous jaws:a 5-year follow-up report[J]. Int J Oral Maxillofac Implants,1993,8(6):635-640.
[43]
Kallus T, Bessing C. Loose gold screws frequently occur in full-arch fixed prostheses supported by osseointegrated implants after 5 years.[J]. Int J Oral Maxillofac Implants,1994,9(2):169-178.
[44]
Kim KH, Choi MY, Kishi T. Fracture analysis of cast pure Ti and Ti-6Al-4V alloy for dental use[J]. Biomed Mater Eng,1997,7(4):271-276.
[45]
Dawson JI, Oreffo ROC. Bridging the regeneration gap:Stem cells,biomaterials and clinical translation in bone tissue engineering[J]. Arch Biochem Biophys,2008,473(2):124-131.
[46]
Yavari F, Rafiee MA, Rafiee J,et al. Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites[J]. ACS Appl Mater Interfaces,2010,2(10):2738-2743.
[47]
Wan C, Frydrych M, Chen B. Strong and bioactive gelatin-graphene oxide nanocomposites[J]. Soft Matter,2011,7(13):6159-6166.
[48]
Bortz DR, Garcia Heras E, Martin-Gullon I. Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites[J]. Macromolecules,2012,45(1):238-245.
[1] 黄泽, 张梓榆, 杨青宇, 赖声清, 李海燕. 乳腺腔镜手术临床应用现状及训练路径[J]. 中华乳腺病杂志(电子版), 2023, 17(02): 122-125.
[2] 李芸, 乔栒柏, 邓华颉, 游云华. 增材制造Ti-6Al-4V钛合金种植体在牙缺失种植修复中的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 359-364.
[3] 黄晓琼, 邓飞龙. 种植体颊侧软组织开裂的研究进展及分类诊疗建议[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 10-14.
[4] 庞兴华, 苑著. 针吸细胞块技术在术前乳腺癌分子分型中的应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 276-279.
[5] 王璐, 施辉波, 曾梦君, 李小勤, 张波, 徐晶, 吴星, 蒋继贫, 陈知水. 人体捐献器官获取全流程远程交互系统的设计与应用[J]. 中华移植杂志(电子版), 2023, 17(02): 89-93.
[6] 叶啟发. 生物人工肝血液净化材料研究现状[J]. 中华移植杂志(电子版), 2023, 17(02): 0-.
[7] 李彦君, 李明前, 曹安, 杨朝坤. 全胸腔镜肺叶切除术后支气管残端旁单根细管负压引流的应用分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 80-82.
[8] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 佘重阳, 卢弘. Janus激酶抑制剂在幼年特发性关节炎相关葡萄膜炎治疗中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 104-108.
[11] 肖庆, 王诚, 周焜, 魏宜功. 脑-机接口的技术原理及临床应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 241-245.
[12] 吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.
[13] 王金丹, 谢叙一, 张雷磊, 李佳慧, 朱心洁, 何超翔. 程序性死亡受体1分子抗体制备及应用的虚拟仿真实验建设思路与应用[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 181-185,191.
[14] 中华医学会消化内镜学分会. 消化内镜超级微创手术创面预处理与抗生素应用专家共识(2023年,北京)[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 83-91.
[15] 杨宁琍, 花红霞, 林睿, 梁辉. 基于生态瞬时评估的减重代谢术后患者信息化体重管理模式构建及应用[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 17-21.
阅读次数
全文


摘要