切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (02) : 151 -154. doi: 10.3877/cma.j.issn.1674-1366.2016.02.014

所属专题: 口腔医学 文献

综述

石墨烯在口腔种植中的应用前景
魏常博1, 余东升1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2015-11-18 出版日期:2016-04-01
  • 通信作者: 余东升
  • 基金资助:
    国家自然科学基金(81272554、81472526); 广东省自然科学基金(2014A030313126)

The application prospects of graphene in dental implantation

Changbo Wei1, Dongsheng Yu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2015-11-18 Published:2016-04-01
  • Corresponding author: Dongsheng Yu
  • About author:
    Corresponding author: Yu Dongsheng, Email:
引用本文:

魏常博, 余东升. 石墨烯在口腔种植中的应用前景[J/OL]. 中华口腔医学研究杂志(电子版), 2016, 10(02): 151-154.

Changbo Wei, Dongsheng Yu. The application prospects of graphene in dental implantation[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(02): 151-154.

石墨烯拥有独特的结构和优异的性能,被誉为"黑金" ,是21世纪当之无愧的"新材料之王" ,有望广泛应用于生物医学领域,如组织工程、药物运输、基因载体、生物成像等。石墨烯在口腔医学领域具有良好的应用前景,本文就其生物相容性和细胞毒性、抗菌性能、促进成骨分化以及优异的机械性能,在口腔种植方面的相关研究作一综述。

Graphene, honored as ′black gold′, is worthy of ′the king of new materials′ in 21st century. Due to its unique structure and excellent properties, it is expected to be widely used in biomedical fields such as tissue engineering, drug delivery, gene loading and biological imaging. Graphene has vast application prospects in the field of oral medicine. The properties including biocompatibility, cytotoxicity, antibacterial activity, promoting osteogenic differentiation and the unique mechanism are discussed. This review elaborates the research on dental implantation.

[1]
Novoselov KS, Geim AK, Morozov SV,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[2]
Singh V, Joung D, Zhai L,et al. Graphene based materials:Past,present and future[J]. Prog Mater Sci,2011,56(8):1178-1271.
[3]
Lee C, Wei X, Kysar JW,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
[4]
Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Phys Rev Lett,2000,84(20):4613-4616.
[5]
Freitag M, Steiner M, Martin Y,et al. Energy dissipation in graphene field-effect transistors[J]. Nano Lett,2009,9(5):1883-1888.
[6]
Kim S, Ihm J, Choi HJ,et al. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide[J]. Phys Rev Lett,2008,100(17):176802.
[7]
Nair RR, Blake P, Grigorenko AN,et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308.
[8]
Zhang L, Zhang F, Yang X,et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Sci Rep,2013,3:1408.
[9]
Geim AK, Novoselov KS. The rise of graphene[J]. Nat Mater,2007,6(3):183-191.
[10]
Zhang Y, Ali SF, Dervishi E,et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells[J]. ACS Nano,2010,4(6):3181-3186.
[11]
Rosa V, Della BA, Cavalcanti BN,et al. Tissue engineering:from research to dental clinics[J]. Dent Mater,2012,28(4):341-348.
[12]
Lee WC, Lim CH, Shi H,et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano,2011,5(9):7334-7341.
[13]
Elkhenany H, Amelse L, Lafont A,et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells:potential for bone tissue engineering[J]. J Appl Toxicol,2015,35(4):367-374.
[14]
Sasidharan A, Panchakarla LS, Chandran P,et al. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene[J]. Nanoscale,2011,3(6):2461-2464.
[15]
Yang K, Wan J, Zhang S,et al. In vivo pharmacokinetics,long-term biodistribution,and toxicology of PEGylated graphene in mice[J]. ACS Nano,2011,5(1):516-522.
[16]
Hu W, Peng C, Luo W,et al. Graphene-based antibacterial paper[J]. ACS Nano,2010,4(7):4317-4323.
[17]
Liu S, Zeng TH, Hofmann M,et al. Antibacterial activity of graphite,graphite oxide,graphene oxide,and reduced graphene oxide:membrane and oxidative stress[J]. ACS Nano,2011,5(9):6971-6980.
[18]
Tu Y, Lv M, Xiu P,et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nat Nanotechnol,2013,8(12):968.
[19]
Kulshrestha S, Khan S, Meena R,et al. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans[J]. Biofouling,2014,30(10):1281-1294.
[20]
Mombelli A. Microbiology and antimicrobial therapy of peri-implantitis[J]. Periodontol 2000,2002(28):177-189.
[21]
Quirynen M, De Soete M, van Steenberghe D. Infectious risks for oral implants:a review of the literature[J]. Clin Oral Implants Res,2002,13(1):1-19.
[22]
Branemark PI. Osseointegration and its experimental background[J]. J Prosthet Dent,1983,50(3):399-410.
[23]
Nayak TR, Andersen H, Makam VS,et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells[J]. ACS Nano,2011,5(6):4670-4678.
[24]
Rosa V, Zhang Z, Grande RH,et al. Dental pulp tissue engineering in full-length human root canals[J]. J Dent Res,2013,92(11):970-975.
[25]
Qi W, Yuan W, Yan J,et al. Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films[J]. J Mater Chem B,2014,2(33):5461-5467.
[26]
Kalbacova M, Broz A, Kong J,et al. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells[J]. Carbon,2010,48(15):4323-4329.
[27]
Alzhavan O, Ghaderi E, Shahsavar M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells[J]. Carbon,2013(59):200-211.
[28]
Ryoo HM, Hoffmann HM, Beumer T,et al. Stage-specific expression of Dlx-5 during osteoblast differentiation:Involvement in regulation of osteocalcin gene expression[J]. Mol Endocrinol,1997,11(11):1681-1694.
[29]
Kim J, Kim Y, Kim Y,et al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells[J]. J Mater Chem B,2013,1(7):933-938.
[30]
Xie Y, Li H, Zhang C,et al. Graphene-reinforced calcium silicate coatings for load-bearing implants[J]. Biomed Mater,2014,9(2):025009.
[31]
Tatavarty R, Ding H, Lu G,et al. Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide-calcium phosphate nanocomposites[J]. Chem Commun,2014,50(62):8484-8487.
[32]
Gao C, Liu T, Shuai C,et al. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold:mechanical and biological performance[J]. Sci Rep,2014,4:4712.
[33]
Porwal H, Grasso S, Cordero-Arias L,et al. Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites[J]. J Mater Sci Mater Med,2014,25(6):1403-1413.
[34]
Loh KP, Bao Q, Ang PK,et al. The chemistry of graphene[J]. J Mater Chem,2010,20(12):2277-2289.
[35]
Pei S, Cheng H. The reduction of graphene oxide[J]. Carbon,2012,50(9):3210-3228.
[36]
Jiayu L, Yu-Shi H, Chi C,et al. Self-supporting graphene hydrogel film as an experimental platform to evaluate the potential of graphene for bone regeneration[J]. Adv Funct Mater,2013,23(28):3494-3502.
[37]
Kang SW, La WG, Kang JM,et al. Bone morphogenetic protein-2 enhances bone regeneration mediated by transplantation of osteogenically undifferentiated bone marrow-derived mesenchymal stem cells[J]. Biotechnol Lett,2008,30(7):1163-1168.
[38]
Depan D, Girase B, Shah JS,et al. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds[J]. Acta Biomater,2011,7(9):3432-3445.
[39]
Li M, Liu Q, Jia Z,et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications[J]. Carbon,2014,67:185-197.
[40]
La WG, Park S, Yoon HH,et al. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small,2013,9(23):4051-4060.
[41]
La WG, Kang SW, Yang HS,et al. The efficacy of bone morphogenetic protein-2 depends on its mode of delivery[J]. Artif Organs,2010,34(12):1150-1153.
[42]
Jemt T, Lekholm U. Oral implant treatment in posterior partially edentulous jaws:a 5-year follow-up report[J]. Int J Oral Maxillofac Implants,1993,8(6):635-640.
[43]
Kallus T, Bessing C. Loose gold screws frequently occur in full-arch fixed prostheses supported by osseointegrated implants after 5 years.[J]. Int J Oral Maxillofac Implants,1994,9(2):169-178.
[44]
Kim KH, Choi MY, Kishi T. Fracture analysis of cast pure Ti and Ti-6Al-4V alloy for dental use[J]. Biomed Mater Eng,1997,7(4):271-276.
[45]
Dawson JI, Oreffo ROC. Bridging the regeneration gap:Stem cells,biomaterials and clinical translation in bone tissue engineering[J]. Arch Biochem Biophys,2008,473(2):124-131.
[46]
Yavari F, Rafiee MA, Rafiee J,et al. Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites[J]. ACS Appl Mater Interfaces,2010,2(10):2738-2743.
[47]
Wan C, Frydrych M, Chen B. Strong and bioactive gelatin-graphene oxide nanocomposites[J]. Soft Matter,2011,7(13):6159-6166.
[48]
Bortz DR, Garcia Heras E, Martin-Gullon I. Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites[J]. Macromolecules,2012,45(1):238-245.
[1] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[2] 周清洁, 蒋萍萍, 梁云, 李琰. 脂质水胶体技术在创面愈合中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 360-363.
[3] 许媛媛, 赵悦岐, 李雪, 曲燕. 艾灸在病毒疣中的临床应用及其机制研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(06): 390-394.
[4] 王淑君, 张楚晗, 唐一阳, 赵雨桐, 李佳伦, 付佳乐. 自粘接树脂水门汀的临床应用及展望[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 276-286.
[5] 梁亮, 鄢雷, 施斌. 上前牙区改良数字化印模复制穿龈轮廓的临床研究[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 103-110.
[6] 李芸, 乔栒柏, 邓华颉, 游云华. 增材制造Ti-6Al-4V钛合金种植体在牙缺失种植修复中的临床应用[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 359-364.
[7] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[8] 戚泽雪, 赵连晖, 王广川, 张春清. 从国内专家共识推荐意见更新探讨经颈静脉肝内门体分流术的临床应用进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 193-196.
[9] 黄宏山, 陈成彩. 经淋巴管超声造影在乳腺癌前哨淋巴结诊断中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 411-414.
[10] 郑静, 张红, 万莉, 王频佳, 邓念华, 张庆莲. “五行”应用型医学检验人才培养的课程思政探索与实践[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(02): 122-127.
[11] 王睿浩, 姜云璐, 田艳君. Apelin/APJ系统生理病理作用的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 138-142.
[12] 魏冰倩, 蓝荣芳. 起搏诱导心肌病应对新策略:导线移除与希氏-浦肯野系统起搏升级[J/OL]. 中华心脏与心律电子杂志, 2024, 12(03): 155-160.
[13] 金贾力, 张文平, 冯智英. 短时程脊髓电刺激治疗老年带状疱疹性神经痛研究进展[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 44-49.
[14] 李赞林, 曹强, 李义亮, 克力木·阿不都热依木. 三维可视化技术在食管裂孔疝外科教学中的应用[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(02): 100-103.
[15] 罗媛元, 曾欣. 无针经皮穴位电刺激治疗胃食管反流病研究进展[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(01): 40-43.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?