切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (04) : 295 -300. doi: 10.3877/cma.j.issn.1674-1366.2015.04.007

所属专题: 文献

基础研究

改良自酸蚀粘接剂对龋影响牙本质粘接性能的影响
李小龙1, 覃峰1, 钱宇1, 尹映竹1, 黄雪清2,(), 罗涛3()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    3. 510140 广州医科大学附属口腔医院·广州口腔病研究所·口腔医学重点实验室
  • 收稿日期:2015-03-25 出版日期:2015-08-01
  • 通信作者: 黄雪清, 罗涛
  • 基金资助:
    教育部博士点基金(新教师类,20130171120121); 国家自然科学基金(青年科学基金项目,81300902); 广东省科技计划(2011B031300018); 中山大学青年教师培育计划(12ykpy62)

Effect of epigallocatechin-3-gallate to self-ectching adhisive to the bonding strengh of caries-affected dentin

Xiaolong Li1, Feng Qin1, Yu Qian1, Yingzhu Yin1, Tao Luo2(), Xueqing Huang3,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    2. Stomatology Hospital of Guangzhou Medical University, Guangzhou Institute of Oral Disease, Key Laboratory of Oral Medicine, Guangzhou 510140, China
  • Received:2015-03-25 Published:2015-08-01
  • Corresponding author: Tao Luo, Xueqing Huang
  • About author:
    Corresponding author: Huang Xueqing, Email: , Tel: 020-83802805
引用本文:

李小龙, 覃峰, 钱宇, 尹映竹, 黄雪清, 罗涛. 改良自酸蚀粘接剂对龋影响牙本质粘接性能的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(04): 295-300.

Xiaolong Li, Feng Qin, Yu Qian, Yingzhu Yin, Tao Luo, Xueqing Huang. Effect of epigallocatechin-3-gallate to self-ectching adhisive to the bonding strengh of caries-affected dentin[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(04): 295-300.

目的

探讨表没食子儿茶素没食子酸酯(EGCG)改良后自酸蚀粘接剂可乐丽Clearfil SE Bond对龋影响牙本质即刻粘接性能影响。

方法

选取中龋离体牙20颗,在龋指示剂下去除龋感染牙本质,保留龋影响牙本质。将EGCG配制成100、200、300 μg/ml Clearfil SE Bond粘接剂溶液及水溶液,以不添加EGCG粘接剂及水溶液作为对照组。微拉伸试件分组按照Clearfil SE Bond说明书指导进行粘接,上方堆塑5~6 mm Z350树脂。使用慢速线性切割机沿牙齿长轴进行切割,形成约1 mm × 1 mm试件,进行微拉伸实验。显微硬度试件分组浸泡于EGCG水溶液中24 h后测试显微硬度。使用SPSS 22.0统计学软件,在One-Way ANOVA模式下进行统计学分析。

结果

EGCG处理后龋影响牙本质的粘接强度及显微硬度均明显提高,差异有统计学意义(F粘接强度=24.554,P粘接强度 < 0.05;F显微硬度=20.418,P显微硬度 < 0.05)。

结论

EGCG可增强龋影响牙本质的即刻粘接强度及显微硬度。

Objective

To explore the effect of the modified Epigallocatechin-3-Gallate(EGCG)on self-etch Clearfil SE Bond bonding strength to caries-affected dentin.

Methods

Twenty extracted human teeth with medial coronal carious lesions extending into middle dentin were used. The softened carious dentin was removed by Caries Marker. EGCG was incorporated at a ratio of 100, 200, and 300 μg/ml into water solution and a dental adhesive, Clear SE Bond. Caries-affected dentin was treated with EGCG water solution for 24 hours before micro-hardness test. And Microtensile bond strength(μTBS)test was used to evaluate the bonding strength to caries-affected dentin treated by Clearfil SE Bond with different EGCG concentration. Statistics analysis software SPSS 22.0 was used to evaluate the difference by One-Way ANOVA.

Result

Micro-hardness and bonding strength of caries-affected dentin are both significantly increased when treated with EGCG(Fbonding strength=24.554, Pbonding strength < 0.05; Fmicro-hardness=20.418, Pmicro-hardness < 0.05).

Conclusion

EGCG can significantly increase the micro-hardness and bonding strength of caries-affected dentin.

表1 添加不同浓度EGCG后Clearsil SE Bond对龋影响牙本质微拉伸强度(MPa,±s)
表2 不同浓度EGCG处理后龋影响牙本质表明显微硬度(MPa,±s)
图1 EGCG水溶液处理后龋影响牙本质表面显微压痕(体视显微镜× 10)
图2 EGCG处理后龋影响牙本质粘接断裂界面的扫描电镜图
[1]
Nakajima M, Sano H, Pashley DH. Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives[J]. J Dent Res, 1995, 74(10): 1679-1688.
[2]
Yoshiyama M, Tay FR, Doi J, et al. Bonding of self-etch and total-etch adhesives to carious dentin[J]. J Dent Res, 2002, 81(8): 556-560.
[3]
Nagle DG, Ferreira D, Zhou YD. Epigallocatechin-3-gallate (EGCG): Chemical and Biomedical perspectives[J]. Phytochemistry, 2006, 67(17): 1849-1855.
[4]
Kato MT, Leite AL, Hannas AR, et al. Impact of protease inhibitors on dentin matrix degradation by collagenase[J]. J Dent Res, 2012, 91(12): 1119-1123.
[5]
Pereira PN, Nunes MF, Miguez PA, et al. Bond strengths of a 1-step self-etching system to caries-affected and normal dentin[J]. Oper Dent, 2006, 31(6): 677-681.
[6]
Doi J, Itota T, Torii Y, et al. Micro-tensile bond strength of self-etching primer adhesive systems to human coronal carious dentin[J]. J Oral Rehabil, 2004, 31(10): 1023-1028.
[7]
Hosoya Y, Tay FR, Miyazaki M, et al. Hardness and elasticity of sound and caries-affected primary dentin bonded with one-step self-etch adhesive[J]. Dent Mater J, 2007, 26(4): 493-500.
[8]
Wang Y, Spencer P, Walker MP. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy[J]. J Biomed Mater Res A, 2007, 81(2): 279-286.
[9]
Marshall GW Jr, Chang YJ, Gansky SA, et al. Demineralization of caries-affected transparent dentin by citric acid: an atomic force microscopy study[J]. Dent Mater, 2001, 17(1): 45-52.
[10]
Ceballos L, Camejo DG, Victoria Fuentes M, et al. Microtensile bond strength of total-etch and self-etching adhesives to caries-affected dentine[J]. J Dent, 2003, 31(7): 469-477.
[11]
Sirin Karaarslan E, Yildiz E, Cebe MA, et al. Evaluation of micro-tensile bond strength of caries-affected human dentine after three different caries removal techniques[J]. J Dent, 2012, 40(10): 793-801.
[12]
Koyuturk AE, Ozmen B, Cortcu M, et al. Effects of Er: YAG laser on bond strength of self-etching adhesives to caries-affected dentin[J]. Microsc Res Tech, 2014, 77(4): 282-288.
[13]
Aggarwal V, Singla M, Yadav S, et al. The effect of caries excavation methods on the bond strength of etch-and-rinse and self-etch adhesives to caries affected dentine[J]. Aust Dent J, 2013, 58(4): 454-460.
[14]
Mazzoni A, Apolonio FM, Saboia VP, et al. Carbodiimide inactivation of MMPs and effect on dentin bonding[J]. J Dent Res, 2014, 93(3): 263-268.
[15]
Scheffel DL, Hebling J, Scheffel RH, et al. Stabilization of dentin matrix after cross-linking treatments, in vitro[J]. Dent Mater, 2014, 30(2): 227-233.
[16]
Srinivasulu S, Vidhya S, Sujatha M, et al. Shear bond strength of composite to deep dentin after treatment with two different collagen cross-linking agents at varying time intervals[J]. Oper Dent, 2012, 37(5): 485-491.
[17]
Pavan S, Xie Q, Hara AT, et al. Biomimetic approach for root caries prevention using a proanthocyanidin-rich agent[J]. Caries Res, 2011, 45(5): 443-447.
[18]
Macedo GV, Yamauchi M, Bedran-Russo AK. Effects of chemical cross-linkers on caries-affected dentin bonding[J]. J Dent Res, 2009, 88(12): 1096-1100.
[19]
Vidal CM, Aguiar TR, Phansalkar R, et al. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins[J]. Acta Biomater, 2014, 10(7): 3288-3294.
[20]
Du X, Huang X, Huang C, et al. Epigallocatechin-3-gallate(EGCG)enhances the therapeutic activity of a dental adhesive[J]. J Dent, 2012, 40(6): 485-492.
[21]
Liu R, Fang M, Xiao Y, et al. The effect of transient proanthocyanidins preconditioning on the cross-linking and mechanical properties of demineralized dentin[J]. J Mater Sci Mater Med, 2011, 22(11): 2403-2411.
[22]
Buzalaf MA, Kato MT, Hannas AR. The role of matrix metalloproteinases in dental erosion[J]. Adv Dent Res, 2012, 24(2): 72-76.
[23]
Fuentes V, Toledano M, Osorio R, et al. Microhardness of superficial and deep sound human dentin[J]. J Biomed Mater Res, 2003, 66(4): 850-853.
[24]
Erhardt MC, Rodrigues JA, Valentino TA, et al. In vitro microTBS of one-bottle adhesive systems: sound versus artificially-created caries-affected dentin[J]. J Biomed Mater Res B Appl Biomater, 2008, 86(1): 181-187.
[25]
Joves GJ, Inoue G, Sadr A, et al. Nanoindentation hardness of intertubular dentin in sound, demineralized and natural caries-affected dentin[J]. J Mech Behav Biomed Mater, 2014(32): 39-45.
[26]
Gonçalves LM, Palma-Dibb RG, Paula-Silva FW, et al. Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth[J]. J Dent, 2014, 42(8): 986-992.
[27]
Mazzoni A, Tjäderhane L, Checchi V, et al. Role of dentin MMPs in caries progression and bond stability[J]. J Dent Res, 2015, 94(2): 241-251.
[28]
Tjäderhane L. Dentin bonding: can we make it last?[J]. Oper Dent, 2015, 40(1): 4-18.
[1] 庞菲菲, 刘俊杰, 于子航, 吴小婕, 张昕宇, 战德松, 付佳乐. 不同表面处理方式对聚醚醚酮与复合树脂粘接性能的影响[J]. 中华口腔医学研究杂志(电子版), 2022, 16(02): 74-81.
[2] 林双, 黄艳苓, 王晓晴, 刘永灏, 张磊, 战德松, 付佳乐. 树脂水门汀的临床应用进展[J]. 中华口腔医学研究杂志(电子版), 2018, 12(06): 379-382.
[3] 苏育武, 支清惠, 崔添强, 刘姗姗, 郑军, 林焕彩. 树脂浸润对人工龋表面硬度及变异链球菌生物膜形成的影响[J]. 中华口腔医学研究杂志(电子版), 2016, 10(05): 303-308.
阅读次数
全文


摘要