切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2014, Vol. 8 ›› Issue (06) : 505 -508. doi: 10.3877/cma.j.issn.1674-1366.2014.06.015

综述

破骨细胞异质性的研究进展
万启龙1,2, 李祖兵2,()   
  1. 1.430079 武汉大学口腔医学院口腔基础医学省部共建国家重点实验室培育基地和口腔生物医学教育部重点实验室
    2.430079 武汉大学口腔医学院口腔颌面创伤与整形美容外科
  • 收稿日期:2014-09-25 出版日期:2014-12-01
  • 通信作者: 李祖兵
  • 基金资助:
    国家自然科学基金青年科学基金项目(81100736)

Research progress on osteoclast heterogeneity

Qilong Wan1, Zubing LI,1()   

  1. 1.The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Department of Oral and Maxillofacial Trauma and Plastic Aesthetic Surgery,School&Hospital of Stomatology,Wuhan University,Wuhan 430079,China
  • Received:2014-09-25 Published:2014-12-01
  • Corresponding author: Zubing LI
引用本文:

万启龙, 李祖兵. 破骨细胞异质性的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2014, 8(06): 505-508.

Qilong Wan, Zubing LI. Research progress on osteoclast heterogeneity[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2014, 8(06): 505-508.

破骨细胞是参与骨改建过程的关键细胞。 近年来,越来越多的证据表明人体不同部位的破骨细胞生物学特性存在着差异,即破骨细胞异质性。 但破骨细胞异质性的产生机制尚不明确,不同部位参与诱导破骨细胞形成的成骨细胞存在差异;不同部位破骨细胞所黏附的骨基质结构及组成成分不同;不同部位破骨前体细胞不同,可能是其产生的机制。

Osteoclasts play a key role in bone remolding. During the last decade, several studies have demonstrated the existence of bone-site-specific biological characteristics of osteoclasts,which is defined as osteoclast heterogeneity. However, the mechanism of such heterogeneity is, still unclear. There are three hypotheses that could explain osteoclast heterogeneity. First, osteoclast heterogeneity may be due to differences in the osteoblasts that harbor the different bone sites and are involved in the generation of osteoclasts. Second, the heterogeneity may be induced by differences in the composition of the bone where osteoclasts attach to. Third, osteoclast heterogeneity results from different osteoclast precursors.

[1]
Boyle WJ, Simonet W S, Lacey DL. Osteoclast differentiation and activation[J]. Nature, 2003,423(6937):337-342.
[2]
Henriksen K, Karsdal MA, Martin TJ. Osteoclast-derived coupling factors in bone remodeling [J]. Calcif Tissue Int,2014,94(1):88-97.
[3]
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions [J]. Nat Rev Rheumatol,2012,8(3):133-143.
[4]
Zainal Ariffin SH, Yamamoto Z, Zainol Abidin IZ, et al.Cellular and molecular changes in orthodontic tooth movement[J]. Scientific World Journal, 2011(11):1788-1803.
[5]
Costa F, Robiony M, Toro C, et al. Condylar positioning devices for orthognathic surgery: a literature review [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008,106(2):179-190.
[6]
Everts V, de Vries TJ, Helfrich MH. Osteoclast heterogeneity:lessons from osteopetrosis and inflammatory conditions [J].Biochim Biophys Acta, 2009,1792(8):757-765.
[7]
Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice [J]. Mayo Clin Proc,2008,83(9):1032-1045.
[8]
Migliorati CA. Bisphosphanates and oral cavity avascular bone necrosis[J]. J Clin Oncol, 2003,21(22):4253-4254.
[9]
Tam Y, Kar K, Nowzari H, et al. Osteonecrosis of the jaw after implant surgery in patients treated with bisphosphonates -a presentation of six consecutive cases [J]. Clin Implant Dent Relat Res, 2014,16(5):751-761 .
[10]
Pichardo SE, van Merkesteyn JP. Bisphosphonate related osteonecrosis of the jaws: spontaneous or dental origin? [J].Oral Surg Oral Med Oral Pathol Oral Radiol, 2013,116(3):287-292.
[11]
Everts V, Korper W, Hoeben KA, et al. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone[J]. J Bone Miner Res, 2006,21(9):1399-1408.
[12]
Everts V, Korper W, Jansen DC, et al. Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone[J]. FASEB J, 1999,13(10):1219-1230.
[13]
Perez-Amodio S, Jansen DC, Schoenmaker T, et al. Calvarial osteoclasts express a higher level of tartrate-resistant acid phosphatase than long bone osteoclasts and activation does not depend on cathepsin K or L activity [J]. Calcif Tissue Int,2006,79(4):245-254.
[14]
Jansen ID, Mardones P, Lecanda F, et al. Ae2(a,b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria[J].FASEB J, 2009,23(10):3470-3481.
[15]
Chaichanasakul T, Kang B, Bezouglaia O, et al. Diverse osteoclastogenesis of bone marrow from mandible versus long bone[J]. J Periodontol, 2014,85(6):829-36.
[16]
Azari A, Schoenmaker T, de Souza Faloni AP, et al. Jaw and long bone marrow derived osteoclasts differ in shape and their response to bone and dentin [J]. Biochem Biophys Res Commun, 2011,409(2):205-210.
[17]
de Souza Faloni AP, Schoenmaker T, Azari A, et al. Jaw and long bone marrows have a different osteoclastogenic potential[J]. Calcif Tissue Int, 2011,88(1):63-74.
[18]
Hu Y, Ek-Rylander B, Karlström E, et al. Osteoclast size heterogeneity in rat long bones is associated with differences in adhesive ligand specificity [J]. Exp Cell Res, 2008,314(3):638-650.
[19]
Vermeer JA, Jansen ID, Marthi M, et al. Jaw bone marrowderived osteoclast precursors internalize more bisphosphonate than long-bone marrow precursors[J]. Bone, 2013,57(1):242-251.
[20]
Yu X, Huang Y, Collin-Osdoby P, et al. CCR1 chemokines promote the chemotactic recruitment, RANKL development,and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts[J]. J Bone Miner Res, 2004,19(12):2065-2077.
[21]
Li X, Qin L, Bergenstock M, et al. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts [J]. J Biol Chem, 2007,282(45):33098-33106.
[22]
Bloemen V, de Vries TJ, Schoenmaker T, et al. Intercellular adhesion molecule-1 clusters during osteoclastogenesis [J].Biochem Biophys Res Commun, 2009,385(4):640-645.
[23]
Walker EC,Poulton IJ,McGregor NE,et al. Sustained RANKL response to parathyroid hormone in oncostatin M receptordeficient osteoblasts converts anabolic treatment to a catabolic effect in vivo[J]. J Bone Miner Res, 2012,27(4):902-912.
[24]
Shibata-Nozaki T, Ito H, Mitomi H, et al. Endogenous prostaglandin E2 inhibits aberrant overgrowth of rheumatoid synovial tissue and the development of osteoclast activity through EP4 receptor[J]. Arthritis Rheum, 2011,63(9):2595-2605.
[25]
Costa-Rodrigues J, Fernandes A, Fernandes MH. Reciprocal osteoblastic and osteoclastic modulation in co-cultured MG63 osteosarcoma cells and human osteoclast precursors [J]. J Cell Biochem, 2011,112(12):3704-3713.
[26]
van den Bos T, Speijer D, Bank RA, et al. Differences in matrix composition between calvaria and long bone in mice suggest differences in biomechanical properties and resorption:Special emphasis on collagen[J]. Bone, 2008,43(3):459-468.
[27]
Long F, Chung UI, Ohba S, et al. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton[J]. Development, 2004,131(6):1309-1318.
[28]
Liu H, Guo J, Wang L, et al. Distinctive anabolic roles of 1,25-dihydroxyvitamin D (3) and parathyroid hormone in teeth and mandible versus long bones [J]. J Endocrinol, 2009,203(2):203-213.
[29]
Kishi T,Hagino H,Kishimoto H,et al. Bone responses at various skeletal sites to human parathyroid hormone in ovariectomized rats: effects of long-term administration, withdrawal, and readministration[J]. Bone, 1998,22(5):515-522.
[30]
Scott CK, Hightower JA. The matrix of endochondral bone differs from the matrix of intramembranous bone [J]. Calcif Tissue Int, 1991,49(5):349-354.
[31]
Kobayashi Y, Goto S, Tanno T, et al. Regional variations in the progression of bone loss in two different mouse osteopenia models[J]. Calcif Tissue Int, 1998,62(5):426-436.
[32]
Yao Z, Xing L, Qin C, et al. Osteoclast precursor interaction with bone matrix induces osteoclast formation directly by an interleukin-1-mediated autocrine mechanism [J]. J Biol Chem,2008,283(15):9917-9924.
[33]
Andersen TL, del Carmen Ovejero M, Kirkegaard T, et al. A scrutiny of matrix metalloproteinases in osteoclasts: evidence for heterogeneity and for the presence of MMPs synthesized by other cells[J]. Bone, 2004,35(5):1107-1119.
[34]
Yavropoulou MP,Yovos JG.Osteoclastogenesis--current knowledge and future perspectives [J]. J Musculoskelet Neuronal Interact,2008,8(3):204-216.
[35]
Helfrich MH, Ralston SH. Bone research protocols [M].Springer, 2003:53-167.
[36]
Alnaeeli M, Park J, Mahamed D, et al. Dendritic cells at the osteo-immune interface: implications for inflammation-induced bone loss[J]. J Bone Miner Res, 2007,22(6):775-780.
[37]
Alnaeeli M, Teng YT. Dendritic cells differentiate into osteoclasts in bone marrow microenvironment in vivo[J]. Blood,2009,113(1):264-265.
[38]
Nose M, Yamazaki H, Hagino H, et al. Comparison of osteoclast precursors in peripheral blood mononuclear cells from rheumatoid arthritis and osteoporosis patients[J]. J Bone Miner Metab, 2009,27(1):57-65.
[39]
de Vries TJ, Schoenmaker T, Hooibrink B, et al. Myeloid blasts are the mouse bone marrow cells prone to differentiate into osteoclasts[J]. J Leukoc Biol, 2009,85(6):919-927.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J/OL]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 杨壹羚, 张恒. 乳腺癌人表皮生长因子受体2瘤内异质性的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2022, 16(01): 44-46.
[3] 周月惠, 江梦钰, 薛宇轩, 卫杨文祥, 凡一诺, 万子艺, 刘予豪, 陈镇秋, 周驰. 线粒体动力学相关蛋白影响破骨细胞分化机制探讨[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 60-68.
[4] 谭飞, 乔永杰, 张浩强, 庄凯鹏, 曾健康, 李嘉欢, 李培杰, 李栋栋, 王静, 周胜虎. 磨损颗粒影响破骨细胞经典信号通路研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 106-117.
[5] 凡军, 曹丽萍. 异鼠李素激活p38信号促进鼠间充质干细胞成骨分化[J/OL]. 中华关节外科杂志(电子版), 2021, 15(04): 432-437.
[6] 沈拓, 朱峰. 异质性耐药在烧伤非发酵革兰氏阴性杆菌感染中的意义[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 75-80.
[7] 王珏, 胡晓红, 贺伟峰. 成纤维细胞的异质性及其在创面愈合和瘢痕形成中的作用[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(04): 353-357.
[8] 林伟斌, 朱聪, 洪海森, 黄国锋, 高明明, 吴进, 沙漠, 林灿斌, 陈娜娜, 张晓旭, 丁真奇. 体外周期性压应力对兔胫骨骨折愈合过程成骨与破骨细胞增殖分化能力的影响[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(04): 289-300.
[9] 陈伟洋, 田俊, 韦曦. 硅离子在骨组织修复再生领域的作用[J/OL]. 中华口腔医学研究杂志(电子版), 2021, 15(06): 375-381.
[10] 王继荣, 暴一众, 唐颖, 吕晓玲, 杨舟鑫. 吴茱萸碱抑制破骨细胞分化延缓骨丢失的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 86-92.
[11] 蔡霖, 龚秋源, 王伟, 田恒力. 单细胞测序分析技术在小胶质细胞表型异质性研究中的最新进展[J/OL]. 中华神经创伤外科电子杂志, 2021, 07(03): 156-160.
[12] 闫维, 张二明, 张克, 安欣华, 向平超. 北京市石景山区40岁及以上居民早期慢性阻塞性肺疾病异质性及影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 533-540.
[13] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J/OL]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[14] 陈捷, 周峰, 刘金波, 王宏宇. 基于聚类的冠心病患者药物治疗模式及人群异质性研究[J/OL]. 中华临床医师杂志(电子版), 2022, 16(10): 1012-1018.
[15] 冯盼, 梁秋华. 细胞间相互作用及代谢微环境在动脉钙化中的作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 193-198.
阅读次数
全文


摘要