[1] |
Medara N, Lenzo JC, Walsh KA,et al. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis[J]. Cytokine, 2021, 138:155340. DOI: 10.1016/j.cyto.2020.155340.
|
[2] |
Kumar R, Theiss AL, Venuprasad K. RORγt protein modifications and IL-17-mediated inflammation[J]. Trends Immunol, 2021, 42(11):1037-1050. DOI: 10.1016/j.it.2021.09.005.
|
[3] |
Akhter S, Tasnim FM, Islam MN,et al. Role of Th17 and IL-17 cytokines on inflammatory and auto-immune diseases[J]. Curr Pharm Des, 2023, 29(26):2078-2090. DOI: 10.2174/1381612829666230904150808.
|
[4] |
Lee GR. The balance of Th17 versus Treg cells in autoimmunity[J]. Int J Mol Sci, 2018, 19(3):730. DOI: 10.3390/ijms19030730.
|
[5] |
Göschl L, Scheinecker C, Bonelli M. Treg cells in autoimmunity:From identification to Treg-based therapies[J]. Semin Immunopathol, 2019, 41(3):301-314. DOI: 10.1007/s00281-019-00741-8.
|
[6] |
Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function:Its genetic anomalies or variations in autoimmune diseases[J]. Cell Res, 2020, 30(6):465-474. DOI: 10.1038/s41422-020-0324-7.
|
[7] |
Paradowska-Gorycka A, Wajda A, Romanowska-Próchnicka K,et al. Th17/Treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis[J]. Front Immunol, 2020, 11:572858. DOI: 10.3389/fimmu.2020.572858.
|
[8] |
Li X, Jiang M, Chen X,et al. Etanercept alleviates psoriasis by reducing the Th17/Treg ratio and promoting M2 polarization of macrophages[J]. Immun Inflamm Dis, 2022, 10(12):e734. DOI: 10.1002/iid3.734.
|
[9] |
Soriano-Baguet L, Brenner D. Metabolism and epigenetics at the heart of T cell function[J]. Trends Immunol, 2023, 44(3):231-244. DOI: 10.1016/j.it.2023.01.002.
|
[10] |
Yao CH, Wang R, Wang Y,et al. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation[J]. Elife, 2019, 8:e41351. DOI: 10.7554/eLife.41351.
|
[11] |
Gao T, Zhang X, Zhao J,et al. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer[J]. Cancer Lett, 2020, 469:89-101. DOI: 10.1016/j.canlet.2019.10.029.
|
[12] |
Bailis W, Shyer JA, Zhao J,et al. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function[J]. Nature, 2019, 571(7765):403-407. DOI: 10.1038/s41586-019-1311-3.
|
[13] |
Xie A, Robles RJ, Mukherjee S,et al. HIF-1α-induced xenobiotic transporters promote Th17 responses in Crohn′s disease[J]. J Autoimmun, 2018, 94:122-133. DOI: 10.1016/j.jaut.2018.07.022.
|
[14] |
|
[15] |
|
[16] |
Xu K, Yin N, Peng M,et al. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses[J]. Immunity, 2021, 54(5):976-987.e7. DOI: 10.1016/j.immuni.2021.04.008.
|
[17] |
Cluxton D, Petrasca A, Moran B,et al. Differential regulation of human Treg and Th17 cells by fatty acid synthesis and glycolysis[J]. Front Immunol, 2019, 10:115. DOI: 10.3389/fimmu.2019.00115.
|
[18] |
Soto-Heredero G, Gómez de Las Heras MM, Gabandé-Rodríguez E,et al. Glycolysis:A key player in the inflammatory response[J]. FEBS J, 2020, 287(16):3350-3369. DOI: 10.1111/febs.15327.
|
[19] |
Menk AV, Scharping NE, Moreci RS,et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions[J]. Cell Rep, 2018, 22(6):1509-1521. DOI: 10.1016/j.celrep.2018.01.040.
|
[20] |
Gerriets VA, Kishton RJ, Nichols AG,et al. Metabolic programming and PDHK1 control CD4 + T cell subsets and inflammation[J]. J Clin Invest, 2015, 125(1):194-207. DOI: 10.1172/JCI76012.
|
[21] |
Li W, Qu G, Choi SC,et al. Targeting T cell activation and lupus autoimmune phenotypes by inhibiting glucose transporters[J]. Front Immunol, 2019, 10:833. DOI: 10.3389/fimmu.2019.00833.
|
[22] |
Zhao L, Wu Q, Wang X,et al. Reversal of abnormal CD4 + T cell metabolism alleviates thyroiditis by deactivating the mTOR/HIF1α/glycolysis pathway[J]. Front Endocrinol(Lausanne), 2021, 12:659738. DOI: 10.3389/fendo.2021.659738.
|
[23] |
Xiao F, Rui K, Han M,et al. Artesunate suppresses Th17 response via inhibiting IRF4-mediated glycolysis and ameliorates Sjogren′s syndrome[J]. Signal Transduct Target Ther, 2022, 7(1):274. DOI: 10.1038/s41392-022-01103-x.
|
[24] |
Shan J, Jin H, Xu Y. T cell metabolism:A new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus[J]. Front Immunol, 2020, 11:1027. DOI: 10.3389/fimmu.2020.01027.
|
[25] |
Zeng H, Chi H. mTOR signaling in the differentiation and function of regulatory and effector T cells[J]. Curr Opin Immunol, 2017, 46:103-111. DOI: 10.1016/j.coi.2017.04.005.
|
[26] |
Liu Y, Zhang DT, Liu XG. mTOR signaling in T cell immunity and autoimmunity[J]. Int Rev Immunol, 2015, 34(1):50-66. DOI: 10.3109/08830185.2014.933957.
|
[27] |
Hong HS, Mbah NE, Shan M,et al. OXPHOS promotes apoptotic resistance and cellular persistence in TH17 cells in the periphery and tumor microenvironment[J]. Sci Immunol, 2022, 7(77):eabm8182. DOI: 10.1126/sciimmunol.abm8182.
|
[28] |
Xu T, Stewart KM, Wang X,et al. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism[J]. Nature, 2017, 548(7666):228-233. DOI: 10.1038/nature23475.
|
[29] |
Kaufmann U, Kahlfuss S, Yang J,et al. Calcium signaling controls pathogenic Th17 cell-mediated inflammation by regulating mitochondrial function[J]. Cell Metab, 2019, 29(5):1104-1118.e6. DOI: 10.1016/j.cmet.2019.01.019.
|
[30] |
Soriano-Baguet L, Grusdat M, Kurniawan H,et al. Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions[J]. Cell Rep, 2023, 42(3):112153. DOI: 10.1016/j.celrep.2023.112153.
|
[31] |
Johnson MO, Wolf MM, Madden MZ,et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism[J]. Cell, 2018, 175(7):1780-1795.e19. DOI: 10.1016/j.cell.2018.10.001.
|
[32] |
Diaz-Vivancos P, de Simone A, Kiddle G,et al. Glutathione:Linking cell proliferation to oxidative stress[J]. Free Radic Biol Med, 2015, 89:1154-1164. DOI: 10.1016/j.freeradbiomed.2015.09.023.
|
[33] |
Endo Y, Asou HK, Matsugae N,et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase,ACC1[J]. Cell Rep, 2015, 12(6):1042-1055. DOI: 10.1016/j.celrep.2015.07.014.
|
[34] |
Michalek RD, Gerriets VA, Jacobs SR,et al. Cutting edge:Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets[J]. J Immunol, 2011, 186(6):3299-3303. DOI: 10.4049/jimmunol.1003613.
|
[35] |
Shi LZ, Wang R, Huang G,et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of Th17 and Treg cells[J]. J Exp Med, 2011, 208(7):1367-1376. DOI: 10.1084/jem.20110278.
|
[36] |
Chen X, Feng L, Li S,et al. TGF-β1 maintains Foxp3 expression and inhibits glycolysis in natural regulatory T cells via PP2A-mediated suppression of mTOR signaling[J]. Immunol Lett, 2020, 226:31-37. DOI: 10.1016/j.imlet.2020.06.016.
|
[37] |
Yero A, Bouassa RM, Ancuta P,et al. Immuno-metabolic control of the balance between Th17-polarized and regulatory T-cells during HIV infection[J]. Cytokine Growth Factor Rev, 2023, 69:1-13. DOI: 10.1016/j.cytogfr.2023.01.001.
|
[38] |
|
[39] |
Miao Y, Zhang C, Yang L,et al. The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRⅡ/IL-2Rα[J]. Cell Commun Signal, 2022, 20(1):48. DOI: 10.1186/s12964-022-00849-9.
|
[40] |
Zhang Q, Zhu Y, Lv C,et al. AhR activation promotes Treg cell generation by enhancing Lkb1-mediated fatty acid oxidation via the Skp2/K63-ubiquitination pathway[J]. Immunology, 2023, 169(4):412-430. DOI: 10.1111/imm.13638.
|
[41] |
Field CS, Baixauli F, Kyle RL,et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for treg suppressive function[J]. Cell Metab, 2020, 31(2):422-437. DOI: 10.1016/j.cmet.2019.11.021.
|
[42] |
Almeida L, Lochner M, Berod L,et al. Metabolic pathways in T cell activation and lineage differentiation[J]. Semin Immunol, 2016, 28(5):514-524. DOI: 10.1016/j.smim.2016.10.009.
|
[43] |
Gualdoni GA, Mayer KA, Goschl L,et al. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation[J]. Faseb J, 2016, 30(11):3800-3809. DOI: 10.1096/fj.201600522R.
|
[44] |
Kao YS, Mamareli P, Dhillon-Labrooy A,et al. Targeting ACC1 in T cells ameliorates psoriatic skin inflammation[J]. J Mol Med(Berl), 2023, 101(9):1153-1166. DOI: 10.1007/s00109-023-02349-w.
|
[45] |
Al-Kuraishy HM, Al-Gareeb AI, Saad HM,et al. The potential therapeutic effect of statins in multiple sclerosis:Beneficial or detrimental effects[J]. Inflammopharmacology, 2023, 31(4):1671-1682. DOI: 10.1007/s10787-023-01240-x.
|
[46] |
Buck MD, O′Sullivan D, Klein Geltink RI,et al. Mitochondrial dynamics controls T cell fate through metabolic programming[J]. Cell, 2016, 166(1):63-76. DOI: 10.1016/j.cell.2016.05.035.
|
[47] |
Baixauli F, Piletic K, Puleston DJ,et al. An LKB1-mitochondria axis controls Th17 effector function[J]. Nature, 2022, 610(7932):555-561. DOI: 10.1038/s41586-022-05264-1.
|
[48] |
|
[49] |
Meeusen S, McCaffery JM, Nunnari J. Mitochondrial fusion intermediates revealed in vitro[J]. Science, 2004, 305(5691):1747-1752. DOI: 10.1126/science.1100612.
|
[50] |
Quiles JM, Gustafsson AB. The role of mitochondrial fission in cardiovascular health and disease[J]. Nat Rev Cardiol, 2022, 19(11):723-736. DOI: 10.1038/s41569-022-00703-y.
|
[51] |
|
[52] |
Pernas L, Scorrano L. Mito-morphosis:Mitochondrial fusion,fission,and cristae remodeling as key mediators of cellular function[J]. Annu Rev Physiol, 2016, 78:505-531. DOI: 10.1146/annurev-physiol-021115-105011.
|
[53] |
van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion[J]. Cold Spring Harb Perspect Biol, 2013, 5(6):a011072. DOI: 10.1101/cshperspect.a011072.
|
[54] |
Kraus F, Roy K, Pucadyil TJ,et al. Function and regulation of the divisome for mitochondrial fission[J]. Nature, 2021, 590(7844):57-66. DOI: 10.1038/s41586-021-03214-x.
|
[55] |
Adebayo M, Singh S, Singh AP,et al. Mitochondrial fusion and fission:The fine-tune balance for cellular homeostasis[J]. FASEB J, 2021, 35(6):e21620. DOI: 10.1096/fj.202100067R.
|
[56] |
Fang Y, Zhang Q, Lv C,et al. Mitochondrial fusion induced by transforming growth factor-β1 serves as a switch that governs the metabolic reprogramming during differentiation of regulatory T cells[J]. Redox Biol, 2023, 62:102709. DOI: 10.1016/j.redox.2023.102709.
|
[57] |
Ding M, Feng N, Tang D,et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway[J]. J Pineal Res, 2018, 65(2):e12491. DOI: 10.1111/jpi.12491.
|
[58] |
Chung KP, Hsu CL, Fan LC,et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis[J]. Nat Commun, 2019, 10(1):3390. DOI: 10.1038/s41467-019-11327-1.
|
[59] |
Noone J, Rochfort KD, O′Sullivan F,et al. SIRT4 is a regulator of human skeletal muscle fatty acid metabolism influencing inner and outer mitochondrial membrane-mediated fusion[J]. Cell Signal, 2023, 112:110931. DOI: 10.1016/j.cellsig.2023.110931.
|
[60] |
Labbé K, Mookerjee S, le Vasseur M,et al. The modified mitochondrial outer membrane carrier MTCH2 links mitochondrial fusion to lipogenesis[J]. J Cell Biol, 2021, 220(11):e202103122. DOI: 10.1083/jcb.202103122.
|
[61] |
Navarro-Compan V, Puig L, Vidal S,et al. The paradigm of IL-23-independent production of IL-17F and IL-17A and their role in chronic inflammatory diseases[J]. Front Immunol, 2023, 14:1191782. DOI: 10.3389/fimmu.2023.1191782.
|
[62] |
Wu B, Wan Y. Molecular control of pathogenic Th17 cells in autoimmune diseases[J]. Int Immunopharmacol, 2020, 80:106187. DOI: 10.1016/j.intimp.2020.106187.
|