切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 240 -246. doi: 10.3877/cma.j.issn.1674-1366.2025.04.003

专家笔谈

线粒体动力学:炎症微环境中Th17/Treg细胞平衡调控机制的新视角
谭灵屏, 余川颖, 张驰, 高雳, 赵川江()   
  1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广东省口腔疾病临床医学研究中心,广州 510055
  • 收稿日期:2025-06-30 出版日期:2025-08-01
  • 通信作者: 赵川江

Mitochondrial dynamics: A novel mechanistic insight into Th17/Treg balance regulation in inflammatory microenvironments

Lingping Tan, Chuanying Yu, Chi Zhang, Li Gao, Chuanjiang Zhao()   

  1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangzhou 510055, China
  • Received:2025-06-30 Published:2025-08-01
  • Corresponding author: Chuanjiang Zhao
  • Supported by:
    National Natural Science Foundation of China(81870770, 82370958)
引用本文:

谭灵屏, 余川颖, 张驰, 高雳, 赵川江. 线粒体动力学:炎症微环境中Th17/Treg细胞平衡调控机制的新视角[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(04): 240-246.

Lingping Tan, Chuanying Yu, Chi Zhang, Li Gao, Chuanjiang Zhao. Mitochondrial dynamics: A novel mechanistic insight into Th17/Treg balance regulation in inflammatory microenvironments[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2025, 19(04): 240-246.

辅助性T淋巴细胞17(Th17)与调节性T淋巴细胞(Treg)的功能失衡是引起多种炎症性疾病的核心机制。尽管二者同源于CD4+ T细胞,其免疫效应却截然相反:Th17介导促炎反应,而Treg维持免疫稳态。因此,深入解析炎症微环境中Th17/Treg平衡的调控机制,对开发靶向治疗策略具有重要意义。本文聚焦线粒体动力学(线粒体分裂/融合的动态过程)这一新兴调控维度,整合近年相关研究,探讨Th17/Treg的线粒体形态学特征及其与代谢重编程的关联,旨在为炎症性疾病提供"代谢-免疫"交互调控的创新理论框架,为靶向线粒体动力学纠正免疫失衡提供转化策略。

The functional imbalance between T helper 17 (Th17) and regulatory T cells (Treg) serves as a pivotal mechanism underlying multiple inflammatory disorders. Although both subsets originate from CD4+ T cells, they exhibit antagonistic immunological effects: Th17 drives pro-inflammatory responses while Treg maintains immune homeostasis. Deciphering the regulatory mechanisms governing Th17/Treg balance within inflammatory microenvironments is crucial for developing targeted therapeutic strategies. This review focuses on mitochondrial dynamics-the dynamic processes of fission and fusion - as an emerging regulatory dimension. By integrating recent advancements, we examine mitochondrial morphological signatures in Th17/Treg subsets and their interplay with metabolic reprogramming. Our findings establish an innovative "metabolism-immunity" interplay framework for inflammatory diseases and propose translational strategies targeting mitochondrial dynamics to rectify immune imbalance.

表1 Th17与Treg细胞的生物学特征、代谢特性及线粒体动力学比较
[1]
Medara NLenzo JCWalsh KA,et al. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis[J]. Cytokine2021138:155340. DOI:10.1016/j.cyto.2020.155340.
[2]
Kumar RTheiss ALVenuprasad K. RORγt protein modifications and IL-17-mediated inflammation[J]. Trends Immunol202142(11):1037-1050. DOI:10.1016/j.it.2021.09.005.
[3]
Akhter STasnim FMIslam MN,et al. Role of Th17 and IL-17 cytokines on inflammatory and auto-immune diseases[J]. Curr Pharm Des202329(26):2078-2090. DOI:10.2174/1381612829666230904150808.
[4]
Lee GR. The balance of Th17 versus Treg cells in autoimmunity[J]. Int J Mol Sci201819(3):730. DOI:10.3390/ijms19030730.
[5]
Göschl LScheinecker CBonelli M. Treg cells in autoimmunity:From identification to Treg-based therapies[J]. Semin Immunopathol201941(3):301-314. DOI:10.1007/s00281-019-00741-8.
[6]
Ohkura NSakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function:Its genetic anomalies or variations in autoimmune diseases[J]. Cell Res202030(6):465-474. DOI:10.1038/s41422-020-0324-7.
[7]
Paradowska-Gorycka AWajda ARomanowska-Próchnicka K,et al. Th17/Treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis[J]. Front Immunol202011:572858. DOI:10.3389/fimmu.2020.572858.
[8]
Li XJiang MChen X,et al. Etanercept alleviates psoriasis by reducing the Th17/Treg ratio and promoting M2 polarization of macrophages[J]. Immun Inflamm Dis202210(12):e734. DOI:10.1002/iid3.734.
[9]
Soriano-Baguet LBrenner D. Metabolism and epigenetics at the heart of T cell function[J]. Trends Immunol202344(3):231-244. DOI:10.1016/j.it.2023.01.002.
[10]
Yao CHWang RWang Y,et al. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation[J]. Elife20198:e41351. DOI:10.7554/eLife.41351.
[11]
Gao TZhang XZhao J,et al. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer[J]. Cancer Lett2020469:89-101. DOI:10.1016/j.canlet.2019.10.029.
[12]
Bailis WShyer JAZhao J,et al. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function[J]. Nature2019571(7765):403-407. DOI:10.1038/s41586-019-1311-3.
[13]
Xie ARobles RJMukherjee S,et al. HIF-1α-induced xenobiotic transporters promote Th17 responses in Crohn′s disease[J]. J Autoimmun201894:122-133. DOI:10.1016/j.jaut.2018.07.022.
[14]
Wang RGreen DR. Metabolic reprogramming and metabolic dependency in T cells[J]. Immunol Rev2012249(1):14-26. DOI:10.1111/j.1600-065X.2012.01155.x.
[15]
Buck MDSowell RTKaech SM,et al. Metabolic instruction of immunity[J]. Cell2017169(4):570-586. DOI:10.1016/j.cell.2017.04.004.
[16]
Xu KYin NPeng M,et al. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses[J]. Immunity202154(5):976-987.e7. DOI:10.1016/j.immuni.2021.04.008.
[17]
Cluxton DPetrasca AMoran B,et al. Differential regulation of human Treg and Th17 cells by fatty acid synthesis and glycolysis[J]. Front Immunol201910:115. DOI:10.3389/fimmu.2019.00115.
[18]
Soto-Heredero GGómez de Las Heras MMGabandé-Rodríguez E,et al. Glycolysis:A key player in the inflammatory response[J]. FEBS J2020287(16):3350-3369. DOI:10.1111/febs.15327.
[19]
Menk AVScharping NEMoreci RS,et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions[J]. Cell Rep201822(6):1509-1521. DOI:10.1016/j.celrep.2018.01.040.
[20]
Gerriets VAKishton RJNichols AG,et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation[J]. J Clin Invest2015125(1):194-207. DOI:10.1172/JCI76012.
[21]
Li WQu GChoi SC,et al. Targeting T cell activation and lupus autoimmune phenotypes by inhibiting glucose transporters[J]. Front Immunol201910:833. DOI:10.3389/fimmu.2019.00833.
[22]
Zhao LWu QWang X,et al. Reversal of abnormal CD4+ T cell metabolism alleviates thyroiditis by deactivating the mTOR/HIF1α/glycolysis pathway[J]. Front Endocrinol(Lausanne)202112:659738. DOI:10.3389/fendo.2021.659738.
[23]
Xiao FRui KHan M,et al. Artesunate suppresses Th17 response via inhibiting IRF4-mediated glycolysis and ameliorates Sjogren′s syndrome[J]. Signal Transduct Target Ther20227(1):274. DOI:10.1038/s41392-022-01103-x.
[24]
Shan JJin HXu Y. T cell metabolism:A new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus[J]. Front Immunol202011:1027. DOI:10.3389/fimmu.2020.01027.
[25]
Zeng HChi H. mTOR signaling in the differentiation and function of regulatory and effector T cells[J]. Curr Opin Immunol201746:103-111. DOI:10.1016/j.coi.2017.04.005.
[26]
Liu YZhang DTLiu XG. mTOR signaling in T cell immunity and autoimmunity[J]. Int Rev Immunol201534(1):50-66. DOI:10.3109/08830185.2014.933957.
[27]
Hong HSMbah NEShan M,et al. OXPHOS promotes apoptotic resistance and cellular persistence in TH17 cells in the periphery and tumor microenvironment[J]. Sci Immunol20227(77):eabm8182. DOI:10.1126/sciimmunol.abm8182.
[28]
Xu TStewart KMWang X,et al. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism[J]. Nature2017548(7666):228-233. DOI:10.1038/nature23475.
[29]
Kaufmann UKahlfuss SYang J,et al. Calcium signaling controls pathogenic Th17 cell-mediated inflammation by regulating mitochondrial function[J]. Cell Metab201929(5):1104-1118.e6. DOI:10.1016/j.cmet.2019.01.019.
[30]
Soriano-Baguet LGrusdat MKurniawan H,et al. Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions[J]. Cell Rep202342(3):112153. DOI:10.1016/j.celrep.2023.112153.
[31]
Johnson MOWolf MMMadden MZ,et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism[J]. Cell2018175(7):1780-1795.e19. DOI:10.1016/j.cell.2018.10.001.
[32]
Diaz-Vivancos Pde Simone AKiddle G,et al. Glutathione:Linking cell proliferation to oxidative stress[J]. Free Radic Biol Med201589:1154-1164. DOI:10.1016/j.freeradbiomed.2015.09.023.
[33]
Endo YAsou HKMatsugae N,et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase,ACC1[J]. Cell Rep201512(6):1042-1055. DOI:10.1016/j.celrep.2015.07.014.
[34]
Michalek RDGerriets VAJacobs SR,et al. Cutting edge:Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets[J]. J Immunol2011186(6):3299-3303. DOI:10.4049/jimmunol.1003613.
[35]
Shi LZWang RHuang G,et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of Th17 and Treg cells[J]. J Exp Med2011208(7):1367-1376. DOI:10.1084/jem.20110278.
[36]
Chen XFeng LLi S,et al. TGF-β1 maintains Foxp3 expression and inhibits glycolysis in natural regulatory T cells via PP2A-mediated suppression of mTOR signaling[J]. Immunol Lett2020226:31-37. DOI:10.1016/j.imlet.2020.06.016.
[37]
Yero ABouassa RMAncuta P,et al. Immuno-metabolic control of the balance between Th17-polarized and regulatory T-cells during HIV infection[J]. Cytokine Growth Factor Rev202369:1-13. DOI:10.1016/j.cytogfr.2023.01.001.
[38]
MacIver NJMichalek RDRathmell JC. Metabolic regulation of T lymphocytes[J]. Annu Rev Immunol201331:259-283. DOI:10.1146/annurev-immunol-032712-095956.
[39]
Miao YZhang CYang L,et al. The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRⅡ/IL-2Rα[J]. Cell Commun Signal202220(1):48. DOI:10.1186/s12964-022-00849-9.
[40]
Zhang QZhu YLv C,et al. AhR activation promotes Treg cell generation by enhancing Lkb1-mediated fatty acid oxidation via the Skp2/K63-ubiquitination pathway[J]. Immunology2023169(4):412-430. DOI:10.1111/imm.13638.
[41]
Field CSBaixauli FKyle RL,et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for treg suppressive function[J]. Cell Metab202031(2):422-437. DOI:10.1016/j.cmet.2019.11.021.
[42]
Almeida LLochner MBerod L,et al. Metabolic pathways in T cell activation and lineage differentiation[J]. Semin Immunol201628(5):514-524. DOI:10.1016/j.smim.2016.10.009.
[43]
Gualdoni GAMayer KAGoschl L,et al. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation[J]. Faseb J201630(11):3800-3809. DOI:10.1096/fj.201600522R.
[44]
Kao YSMamareli PDhillon-Labrooy A,et al. Targeting ACC1 in T cells ameliorates psoriatic skin inflammation[J]. J Mol Med(Berl)2023101(9):1153-1166. DOI:10.1007/s00109-023-02349-w.
[45]
Al-Kuraishy HMAl-Gareeb AISaad HM,et al. The potential therapeutic effect of statins in multiple sclerosis:Beneficial or detrimental effects[J]. Inflammopharmacology202331(4):1671-1682. DOI:10.1007/s10787-023-01240-x.
[46]
Buck MDO′Sullivan DKlein Geltink RI,et al. Mitochondrial dynamics controls T cell fate through metabolic programming[J]. Cell2016166(1):63-76. DOI:10.1016/j.cell.2016.05.035.
[47]
Baixauli FPiletic KPuleston DJ,et al. An LKB1-mitochondria axis controls Th17 effector function[J]. Nature2022610(7932):555-561. DOI:10.1038/s41586-022-05264-1.
[48]
Chan DC. Mitochondrial dynamics and its involvement in disease[J]. Annu Rev Pathol202015:235-259. DOI:10.1146/annurev-pathmechdis-012419-032711.
[49]
Meeusen SMcCaffery JMNunnari J. Mitochondrial fusion intermediates revealed in vitro[J]. Science2004305(5691):1747-1752. DOI:10.1126/science.1100612.
[50]
Quiles JMGustafsson AB. The role of mitochondrial fission in cardiovascular health and disease[J]. Nat Rev Cardiol202219(11):723-736. DOI:10.1038/s41569-022-00703-y.
[51]
Chan DC. Fusion and fission:Interlinked processes critical for mitochondrial health[J]. Annu Rev Genet201246:265-287. DOI:10.1146/annurev-genet-110410-132529.
[52]
Pernas LScorrano L. Mito-morphosis:Mitochondrial fusion,fission,and cristae remodeling as key mediators of cellular function[J]. Annu Rev Physiol201678:505-531. DOI:10.1146/annurev-physiol-021115-105011.
[53]
van der Bliek AMShen QKawajiri S. Mechanisms of mitochondrial fission and fusion[J]. Cold Spring Harb Perspect Biol20135(6):a011072. DOI:10.1101/cshperspect.a011072.
[54]
Kraus FRoy KPucadyil TJ,et al. Function and regulation of the divisome for mitochondrial fission[J]. Nature2021590(7844):57-66. DOI:10.1038/s41586-021-03214-x.
[55]
Adebayo MSingh SSingh AP,et al. Mitochondrial fusion and fission:The fine-tune balance for cellular homeostasis[J]. FASEB J202135(6):e21620. DOI:10.1096/fj.202100067R.
[56]
Fang YZhang QLv C,et al. Mitochondrial fusion induced by transforming growth factor-β1 serves as a switch that governs the metabolic reprogramming during differentiation of regulatory T cells[J]. Redox Biol202362:102709. DOI:10.1016/j.redox.2023.102709.
[57]
Ding MFeng NTang D,et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway[J]. J Pineal Res201865(2):e12491. DOI:10.1111/jpi.12491.
[58]
Chung KPHsu CLFan LC,et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis[J]. Nat Commun201910(1):3390. DOI:10.1038/s41467-019-11327-1.
[59]
Noone JRochfort KDO′Sullivan F,et al. SIRT4 is a regulator of human skeletal muscle fatty acid metabolism influencing inner and outer mitochondrial membrane-mediated fusion[J]. Cell Signal2023112:110931. DOI:10.1016/j.cellsig.2023.110931.
[60]
Labbé KMookerjee Sle Vasseur M,et al. The modified mitochondrial outer membrane carrier MTCH2 links mitochondrial fusion to lipogenesis[J]. J Cell Biol2021220(11):e202103122. DOI:10.1083/jcb.202103122.
[61]
Navarro-Compan VPuig LVidal S,et al. The paradigm of IL-23-independent production of IL-17F and IL-17A and their role in chronic inflammatory diseases[J]. Front Immunol202314:1191782. DOI:10.3389/fimmu.2023.1191782.
[62]
Wu BWan Y. Molecular control of pathogenic Th17 cells in autoimmune diseases[J]. Int Immunopharmacol202080:106187. DOI:10.1016/j.intimp.2020.106187.
[1] 周月惠, 江梦钰, 薛宇轩, 卫杨文祥, 凡一诺, 万子艺, 刘予豪, 陈镇秋, 周驰. 线粒体动力学相关蛋白影响破骨细胞分化机制探讨[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 60-68.
[2] 黄珞, 梁爱琳, 龚启梅. 线粒体动力学在牙源性间充质干细胞中的研究现状[J/OL]. 中华口腔医学研究杂志(电子版), 2022, 16(06): 352-357.
[3] 李玲, 于艳艳, 王玉杰, 赵凯. 毛细支气管炎患儿血清25(OH)D水平与Th17/Treg平衡的关系[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(05): 718-720.
[4] 冯同, 代文静, 李万成. 线粒体质量控制在慢性阻塞性肺疾病作用机制的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(02): 287-289.
[5] 陈梦婷, 孟潇潇, 王瑞兰. 急性肺损伤时肺部微环境介导的细胞代谢变化的研究进展[J/OL]. 中华重症医学电子杂志, 2022, 08(01): 80-84.
[6] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[7] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J/OL]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?