切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 352 -357. doi: 10.3877/cma.j.issn.1674-1366.2022.06.003

牙髓干细胞专栏·综述

线粒体动力学在牙源性间充质干细胞中的研究现状
黄珞1, 梁爱琳1, 龚启梅1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2022-06-07 出版日期:2022-12-01
  • 通信作者: 龚启梅

Research progress of mitochondrial dynamics in dental mesenchymal stem cells

Luo Huang1, Ailin Liang1, Qimei Gong1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2022-06-07 Published:2022-12-01
  • Corresponding author: Qimei Gong
  • Supported by:
    National Natural Science Foundation of China(81870750)
引用本文:

黄珞, 梁爱琳, 龚启梅. 线粒体动力学在牙源性间充质干细胞中的研究现状[J]. 中华口腔医学研究杂志(电子版), 2022, 16(06): 352-357.

Luo Huang, Ailin Liang, Qimei Gong. Research progress of mitochondrial dynamics in dental mesenchymal stem cells[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2022, 16(06): 352-357.

牙源性间充质干细胞(DMSC)是一种来源于哺乳动物牙齿相关组织的间充质干细胞,其具有自我更新、多向分化和免疫调节等功能,且容易获得,对组织工程学和再生医学具有重要的研究意义。线粒体是高度动态的细胞器,通过不断地分裂和融合来维持其形态,也称为线粒体动力学。研究表明,线粒体动力学是决定干细胞命运的关键因素。线粒体分裂和融合的协调对细胞功能和应激反应至关重要,而异常的分裂和融合导致干细胞功能障碍。近年来研究证实,DMSC在增殖、分化、凋亡和衰老过程中经历特定的线粒体动力学过程。本文就线粒体动力学分子调控的机制以及间充质干细胞线粒体的形态特征,线粒体动力学在生理和应激微环境下对DMSC行为的调控作用作一综述。

Dental mesenchymal stem cells (DMSCs) are derived from mammalian tooth-related tissues, which have the functions of self-renewal, multi-directional differentiation and immunomodulation. They have important research values in tissue engineering and regenerative medicine. Mitochondria, known as mitochondrial dynamics, are highly dynamic organelles that maintain their morphology through continuous division and fusion. Studies have shown that mitochondrial dynamics is a key factor in determining the fate of stem cells. The coordination of mitochondrial division and fusion is vital for cell function and stress response, while abnormal dynamic may lead to the dysfunction of stem cells. Recent studies have confirmed that DMSCs undergo specific mitochondrial dynamics in the process of proliferation, differentiation, apoptosis or senescence. This article reviewed the molecular regulation mechanism of mitochondrial dynamics, the morphological characteristics of mesenchymal stem cell mitochondria, and the role of mitochondrial dynamics in regulating DMSCs behavior in physiological and stress microenvironment.

[1]
Li BOuchi TCao Y,et al. Dental-derived mesenchymal stem cells:State of the art[J]. Front Cell Dev Biol20219:654559. DOI:10.3389/fcell.2021.654559.
[2]
Sharpe PT. Dental mesenchymal stem cells[J]. Development2016143(13):2273-2280. DOI:10.1242/dev.134189.
[3]
van der Bliek AMShen QKawajiri S. Mechanisms of mitochondrial fission and fusion[J]. Cold Spring Harb Perspect Biol20135(6):a011072. DOI:10.1101/cshperspect.a011072.
[4]
El-Hattab AWSuleiman JAlmannai M,et al. Mitochondrial dynamics:Biological roles,molecular machinery,and related diseases[J]. Mol Genet Metab2018125(4):315-321. DOI:10.1016/j.ymgme.2018.10.003.
[5]
Yu RLendahl UNistér M,et al. Regulation of mammalian mitochondrial dynamics:Opportunities and challenges[J]. Front Endocrinol(Lausanne)202011:374. DOI:10.3389/fendo.2020.00374.
[6]
Stiles LShirihai OS. Mitochondrial dynamics and morphology in beta-cells[J]. Best Pract Res Clin Endocrinol Metab201226(6):725-738. DOI:10.1016/j.beem.2012.05.004.
[7]
Wai TLanger T. Mitochondrial dynamics and metabolic regulation[J]. Trends Endocrinol Metab201627(2):105-117. DOI:10.1016/j.tem.2015.12.001.
[8]
Breitzig MTAlleyn MDLockey RF,et al. A mitochondrial delicacy:Dynamin-related protein 1 and mitochondrial dynamics[J]. Am J Physiol Cell Physiol2018315(1):C80-C90. DOI:10.1152/ajpcell.00042.2018.
[9]
Zhao SHeng NWang H,et al. Mitofusins:From mitochondria to fertility[J]. Cell Mol Life Sci202279(7):1-19. DOI:10.1007/s00018-022-04386-z.
[10]
Losón OCSong ZChen H,et al. Fis1,Mff,MiD49,and MiD51 mediate Drp1 recruitment in mitochondrial fission[J]. Mol Biol Cell201324(5):659-667. DOI:10.1091/mbc.E12-10-0721.
[11]
Fröhlich CGrabiger SSchwefel D,et al. Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein[J]. EMBO J201332(9):1280-1292. DOI:10.1038/emboj.2013.74.
[12]
Lisa TShun NVincent P,et al. Mitochondrial dynamics:Overview of molecular mechanisms[J]. Essays Biochem201862(3):341-360. DOI:10.1042/EBC20170104.
[13]
Din SMason MVölkers M,et al. Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation[J]. Proc Natl Acad Sci U S A2013110(15):5969-5974. DOI:10.1073/pnas.1213294110.
[14]
Hu CHuang YLi L. Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals[J]. Int J Mol Sci201718(1):144. DOI:10.3390/ijms18010144.
[15]
Lee JEWestrate LMWu H,et al. Multiple dynamin family members collaborate to drive mitochondrial division[J]. Nature2016540(7631):139-143. DOI:10.1038/nature20555.
[16]
Fonseca TBSánchez-Guerrero ÁMilosevic I,et al. Mitochondrial fission requires DRP1 but not dynamins[J]. Nature2019570(7761):E34-E42. DOI:10.1038/s41586-019-1296-y.
[17]
Chandhok GLazarou MNeumann B. Structure,function,and regulation of mitofusin-2 in health and disease[J]. Biol Rev Camb Philos Soc201893(2):933-949. DOI:10.1111/brv.12378.
[18]
Brandt TCavellini LKühlbrandt W,et al. A mitofusin-dependent docking ring complex triggers mitochondrial fusion in vitro[J]. Elife20165:e14618. DOI:10.7554/eLife.14618.
[19]
Sloat SRWhitley BNEngelhart EA,et al. Identification of a mitofusin specificity region that confers unique activities to Mfn1 and Mfn2[J]. Mol Biol Cell201930(17):2309-2319. DOI:10.1091/mbc.E19-05-0291.
[20]
Cipolat SMartins de Brito DDal Zilio B,et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion[J]. Proc Natl Acad Sci U S A2004101(45):15927-15932. DOI:10.1073/pnas.0407043101.
[21]
Mattie SRiemer JWideman JG,et al. A new mitofusin topology places the redox-regulated C terminus in the mitochondrial intermembrane space[J]. J Cell Biol2018217(2):507-515. DOI:10.1083/jcb.201611194.
[22]
Gilkerson RWSelker JMLCapaldi RA. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation[J]. FEBS Lett2003546(2/3):355-358. DOI:10.1016/s0014-5793(03)00633-1.
[23]
Benincá CPlanagumà Jde Freitas Shuck A,et al. A new non-canonical pathway of Gαq protein regulating mitochondrial dynamics and bioenergetics[J]. Cell Signal201426(5):1135-1146. DOI:10.1016/j.cellsig.2014.01.009.
[24]
Khacho MTarabay MPatten D,et al. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival[J]. Nat Commun20145:3550. DOI:10.1038/ncomms4550.
[25]
Zhang HMenzies KJAuwerx J. The role of mitochondria in stem cell fate and aging[J]. Development2018145(8):dev143420. DOI:10.1242/dev.143420.
[26]
Fu WLiu YYin H. Mitochondrial dynamics:Biogenesis,fission,fusion,and mitophagy in the regulation of stem cell behaviors[J]. Stem Cells Int20192019:9757201. DOI:10.1155/2019/9757201.
[27]
Woods DC. Mitochondrial heterogeneity:Evaluating mitochondrial subpopulation dynamics in stem cells[J]. Stem Cells Int2017:7068567. DOI:10.1155/2017/7068567.
[28]
Folmes CDNelson TJMartinez-Fernandez A,et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming[J]. Cell Metab201114(2):264-271. DOI:10.1016/j.cmet.2011.06.011.
[29]
Zhou WChoi MMargineantu D,et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition[J]. EMBO J201431(9):2103-2116. DOI:10.1038/emboj.2012.71.
[30]
Ren LChen XChen X,et al. Mitochondrial dynamics:Fission and fusion in fate determination of mesenchymal stem cells[J]. Front Cell Dev Biol20208:580070. DOI:10.3389/fcell.2020.580070.
[31]
Sênos Demarco RUyemura BSD′Alterio C,et al. Mitochondrial fusion regulates lipid homeostasis and stem cell maintenance in the Drosophila testis[J]. Nat Cell Biol201921(6):710-720. DOI:10.1038/s41556-019-0332-3.
[32]
Khacho MClark ASvoboda DS,et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program[J]. Cell Stem Cell201619(2):232-247. DOI:10.1016/j.stem.2016.04.015.
[33]
Sperber HMathieu JWang Y,et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem celltransition[J]. Nat Cell Biol201517(12):1523-1535. DOI:10.1038/ncb3264.
[34]
Lorenz CLesimple PBukowiecki R,et al. Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders[J]. Cell Stem Cell201720(5):659. DOI:10.1016/j.stem.2016.12.013.
[35]
Feng XZhang WYin W,et al. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells[J]. Exp Biol Med(Maywood)2019244(1):64-72. DOI:10.1177/1535370218821063.
[36]
Kato HThi Mai Pham TYamaza H,et al. Mitochondria regulate the differentiation of stem cells from human exfoliated deciduous teeth[J]. Cell Struct Funct201742(2):105-116. DOI:10.1247/csf.17012.
[37]
Forni MFPeloggia JTrudeau K,et al. Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics[J]. Stem cells201634(3):743-755. DOI:10.1002/stem.2248.
[38]
Hoque ASivakumaran PBond ST,et al. Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells[J]. Cell Death Discov20184(1):39. DOI:10.1038/s41420-018-0042-9.
[39]
Moqbel SAAZeng RMa D,et al. The effect of mitochondrial fusion on chondrogenic differentiation of cartilage progenitor/stem cells via Notch2 signal pathway[J]. Stem Cell Res Ther202213(1):1-17. DOI:10.1186/s13287-022-02758-7.
[40]
Hsu YCWu YTYu TH,et al. Mitochondria in mesenchymal stem cell biology and cell therapy:From cellular differentiation to mitochondrial transfer[J]. Semin Cell Dev Biol201652:119-131. DOI:10.1016/j.semcdb.2016.02.011.
[41]
Li QGao ZChen Y,et al. The role of mitochondria in osteogenic,adipogenic and chondrogenic differentiation of mesenchymal stem cells[J]. Protein Cell20178(6):439-445. DOI:10.1007/s13238-017-0385-7.
[42]
Wang LCheng LWang H,et al. Glycometabolic reprogramming associated with the initiation of human dental pulp stem cell differentiation[J]. Cell Biol Int201640(3):308-317. DOI:10.1002/cbin.10568.
[43]
Chen HKang JZhang F,et al. SIRT4 regulates rat dental papilla cell differentiation by promoting mitochondrial functions[J]. Int J Biochem Cell Biol2021134(46):105962. DOI:10.1016/j.biocel.2021.105962.
[44]
Jang YEGo SHLee BN,et al. Changes in SIRT gene expression during odontoblastic differentiation of human dental pulp cells[J]. Restor Dent Endod201540(3):223-228. DOI:10.5395/rde.2015.40.3.223.
[45]
Maity JDeb MGreene C,et al. KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism[J]. Redox Biol202036:101622. DOI:10.1016/j.redox.2020.101622.
[46]
Marycz KHouston JMIWeiss C,et al. 5-azacytidine and resveratrol enhance chondrogenic differentiation of metabolic syndrome-derived mesenchymal stem cells by modulating autophagy[J]. Oxid Med Cell Longev2019:1523140. DOI:10.1155/2019/1523140.
[47]
Gomes LCScorrano L. High levels of Fis1,a pro-fission mitochondrial protein,trigger autophagy[J]. Biochim Biophys Acta20081777(7/8):860-866. DOI:10.1016/j.bbabio.2008.05.442.
[48]
Zhong XCui PCai Y,et al. Mitochondrial dynamics is critical for the full pluripotency and embryonic developmental potential of pluripotent stem cells[J]. Cell Metab201929(4):979-992. DOI:10.1016/j.cmet.2018.11.007.
[49]
Maeda H. Aging and senescence of dental pulp and hard tissues of the tooth[J]. Front Cell Dev Biol20208:605996. DOI:10.1007/s12015-018-9809-x.
[50]
Pokrywczynska MMaj MKloskowski T,et al. Molecular aspects of adipose-derived stromal cell senescence in a long-term culture:A potential role of inflammatory pathways[J]. Cell Transplant202029:963689720917341. DOI:10.1177/0963689720917341.
[51]
Li XHong YHe H,et al. FGF21 mediates mesenchymal stem cell senescence via regulation of mitochondrial dynamics[J]. Oxid Med Cell Longev2019:4915149. DOI:10.1155/2019/4915149.
[52]
Yoon YSYoon DSLim IK,et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence:Involvement of enhanced fusion process through modulation of Fis1[J]. J Cell Physiol2006209(2):468-480. DOI:10.1002/jcp.20753.
[53]
Morsczeck C. Cellular senescence in dental pulp stem cells[J]. Arch Oral Biol201999:150-155. DOI:10.1016/j.archoralbio.2019.01.012.
[54]
Lee JHYoon YMSong KH,et al. Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway[J]. Aging Cell202019(3):e13111. DOI:10.1111/acel.13111.
[55]
Stab BRLaura MAdriana G,et al. Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs[J]. Front Aging Neurosci20168:299. DOI:10.3389/fnagi.2016.00299.
[56]
Meyer JNLeuthner TCLuz AL. Mitochondrial fusion,fission,and mitochondrial toxicity[J]. Toxicology2017391:42-53. DOI:10.1016/j.tox.2017.07.019.
[57]
Srivastava ASingh SRajpurohit CS,et al. Secretome of differentiated PC12 cells restores the monocrotophos-induced damages in human mesenchymal stem cells and SHSY-5Y cells:Role of autophagy and mitochondrial dynamics[J]. Neuromolecular Med201820(2):233-251. DOI:10.1007/s12017-018-8487-9.
[58]
Ma LFeng XWang K,et al. Dexamethasone promotes mesenchymal stem cell apoptosis and inhibits osteogenesis by disrupting mitochondrial dynamics[J]. FEBS Open Bio202010(2):211-220. DOI:10.1002/2211-5463.12771.
[59]
Rosdah AABond STSivakumaran P,et al. Mdivi-1 protects human W8B2+ cardiac stem cells from oxidative stress and simulated ischemia-reperfusion injury[J]. Stem Cells Dev201726(24):1771-1780. DOI:10.1089/scd.2017.0157.
[60]
He YGan XZhang L,et al. CoCl2 induces apoptosis via a ROS-dependent pathway and Drp1-mediated mitochondria fission in periodontal ligament stem cells[J]. Am J Physiol Cell Physiol2018315(3):C389-C397. DOI:10.1152/ajpcell.00248.2017.
[61]
Ježek JCooper KFStrich R. Reactive oxygen species and mitochondrial dynamics:The yin and yang of mitochondrial dysfunction and cancer progression[J]. Antioxidants(Basel)20187(1):13. DOI:10.3390/antiox7010013.
[62]
Gillmore TFarrell AAlahari S,et al. Dichotomy in hypoxia-induced mitochondrial fission in placental mesenchymal cells during development and preeclampsia:Consequences for trophoblast mitochondrial homeostasis[J]. Cell Death Dis202213(2):1-14. DOI:10.1038/s41419-022-04641-y.
[63]
Li CJSun LYPang CY. Synergistic Protection of N-acetylcysteine and ascorbic acid 2-phosphate on human mesenchymal stem cells against mitoptosis,necroptosis and apoptosis[J]. Sci Rep20145:9819. DOI:10.1038/srep09819.
[64]
Shi LJi YZhao S,et al. Crosstalk between reactive oxygen species and Dynamin-related protein 1 in periodontitis[J]. Free Radic Biol Med2021172:19-32. DOI:10.1016/j.freeradbiomed.2021.05.031.
[65]
Han YChen QZhang L,et al. Indispensable role of HIF-1α signaling in post-implantation survival and angio-/vasculogenic properties of SHED[J]. Front Cell Dev Biol20219:655073. DOI:10.3389/fcell.2021.655073.
[66]
Patten DAOuellet MAllan DS,et al. Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation[J]. FASEB J201933(8):9263-9278. DOI:10.1096/fj.201801483RR.
[67]
Shen YWu LWang J,et al. The role of mitochondria in methamphetamine-induced inhibitory effects on osteogenesis of mesenchymal stem cells[J]. Eur J Pharmacol2018826:56-65. DOI:10.1016/j.ejphar.2018.02.049.
[68]
Shen YWu LQin D,et al. Carbon black suppresses the osteogenesis of mesenchymal stem cells:The role of mitochondria[J]. Part Fibre Toxicol201815(1):16. DOI:10.1186/s12989-018-0253-5.
[69]
Weekate KChuenjitkuntaworn BChuveera P,et al. Alterations of mitochondrial dynamics,inflammation and mineralization potential of lipopolysaccharide-induced human dental pulp cells after exposure to N-acetyl cysteine,Biodentine or ProRoot MTA[J]. Int Endod J202154(6):951-965. DOI:10.1111/iej.13484.
[70]
Vaseenon SSrisuwan TChattipakorn N,et al. Lipopolysaccharides and hydrogen peroxide induce contrasting pathological conditions in dental pulpal cells[J]. Int Endod J2022. DOI:10.1111/iej.13853.
[1] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[2] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[5] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[6] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[7] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[8] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[13] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[14] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要