切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 358 -363. doi: 10.3877/cma.j.issn.1674-1366.2022.06.004

牙髓干细胞专栏·综述

支架机械特征介导Yes相关蛋白信号调节干细胞生物行为的研究进展
利桂娴1, 蒋宏伟1, 杜宇1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2022-10-06 出版日期:2022-12-01
  • 通信作者: 杜宇

Research progress of regulation of stem cell biological behavior by scaffold mechanical properties through Yes-associated protein signaling

Guixian Li1, Hongwei Jiang1, Yu Du1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2022-10-06 Published:2022-12-01
  • Corresponding author: Yu Du
  • Supported by:
    Natural Science Foundation of Guangdong Province(2021A1515010845)
引用本文:

利桂娴, 蒋宏伟, 杜宇. 支架机械特征介导Yes相关蛋白信号调节干细胞生物行为的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2022, 16(06): 358-363.

Guixian Li, Hongwei Jiang, Yu Du. Research progress of regulation of stem cell biological behavior by scaffold mechanical properties through Yes-associated protein signaling[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2022, 16(06): 358-363.

干细胞可感知局部微环境理化特征,传递并转导机械或化学信号以调控黏附、增殖、分化、代谢和免疫等生物行为。组织工程常通过设计人工支架模拟体内微环境机械特征对干细胞进行仿生调控,研究发现从细胞感知外界机械刺激到启动生物行为发生变化的过程中,Yes相关蛋白(YAP)发挥了重要作用。本文旨在对支架机械特征的功能,及其介导YAP调控干细胞生物行为作用机制的研究进展进行综述。

Stem cells can sense the physical or chemical signals of the local microenvironment to regulate biological behaviors including adhesion, proliferation, differentiation, metabolism, and immunity. A common strategy of designing artificial scaffolds in tissue engineering is to simulate the mechanical properties of the microenvironment in vivo. Growing evidence suggests that Yes-associated protein (YAP) plays an important role in the process by which stem cells recognize external mechanical cues and transform the information into cellular responses. In this review, we summarized the research progress on the mechanical properties of scaffolds and the mechanism of YAP in regulating stem cell biological behavior.

图1 Yes相关蛋白(YAP)参与机械信号传导的信号通路模式图 Integrins:整合素受体;Talin:踝蛋白;Vinculin:黏着斑蛋白;Src:肉瘤基因;FAK:黏着斑激酶;F-actin:F-肌动蛋白;RhoA:RAS同源基因家族成员A;ROCK:Rho激酶;LATS1/2:大肿瘤抑制因子1/2;TAZ:Tafazzin蛋白;TEAD:转录因子TEAD。
[1]
Kfoury YScadden DT. Mesenchymal cell contributions to the stem cell niche[J]. Cell Stem Cell201516(3):239-253. DOI:10.1016/j.stem.2015.02.019.
[2]
Guilak FCohen DMEstes BT,et al. Control of stem cell fate by physical interactions with the extracellular matrix[J]. Cell Stem Cell20095(1):17-26. DOI:10.1016/j.stem.2009.06.016.
[3]
Cunniffe GMDíaz-Payno PJSheehy EJ,et al. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues[J]. Biomaterials2019188:63-73. DOI:10.1016/j.biomaterials.2018.09.044.
[4]
Mertz AFChe YBanerjee S,et al. Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces[J]. Proc Natl Acad Sci U S A2013110(3):842-847. DOI:10.1073/pnas.1217279110.
[5]
Huang GGreenspan DS. ECM roles in the function of metabolic tissues[J]. Trends Endocrinol Metab201223(1):16-22. DOI:10.1016/j.tem.2011.09.006.
[6]
Elosegui-Artola ABazellières EAllen MD,et al. Rigidity sensing and adaptation through regulation of integrin types[J]. Nat Mater201413(6):631-637. DOI:10.1038/nmat3960.
[7]
Urbanczyk MLayland SLSchenke-Layland K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues[J]. Matrix Biol202085/86:1-14. DOI:10.1016/j.matbio.2019.11.005.
[8]
Chakraborty SNjah KPobbati AV,et al. Agrin as a mechanotransduction signal regulating yap through the hippo pathway[J]. Cell Rep201718(10):2464-2479. DOI:10.1016/j.celrep.2017.02.041.
[9]
Seo JKim J. Regulation of Hippo signaling by actin remodeling[J]. BMB Rep201851(3):151-156. DOI:10.5483/bmbrep.2018.51.3.012.
[10]
Aragona MPanciera TManfrin A,et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors[J]. Cell2013154(5):1047-1059. DOI:10.1016/j.cell.2013.07.042.
[11]
Dupont SMorsut LAragona M,et al. Role of YAP/TAZ in mechanotransduction[J]. Nature2011474(7350):179-183. DOI:10.1038/nature10137.
[12]
Gouveia RMVajda FWibowo JA,et al. YAP,ΔNp63,and β-catenin signaling pathways are involved in the modulation of corneal epithelial stem cell phenotype induced by substrate stiffness[J]. Cells20198(4):347. DOI:10.3390/cells8040347.
[13]
Swanson WBOmi MWoodbury SM,et al. Scaffold pore curvature influences ΜSC fate through differential cellular organization and YAP/TAZ activity[J]. Int J Mol Sci202223(9):4499. DOI:10.3390/ijms23094499.
[14]
Chen ZBachhuka AWei F,et al. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration[J]. Nanoscale20179(46):18129-18152. DOI:10.1039/c7nr05913b.
[15]
Ma JLi JHu S,et al. Collagen modified anisotropic PLA scaffold as a base for peripheral nerve regeneration[J]. Macromol Biosci202222(7):e2200119. DOI:10.1002/mabi.202200119.
[16]
Wan SFu XJi Y,et al. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds[J]. Biomaterials2018171:107-117. DOI:10.1016/j.biomaterials.2018.04.035.
[17]
Tang HYi BWang X,et al. Understanding the cellular responses based on low-density electrospun fiber networks[J]. Mater Sci Eng C Mater Biol Appl2021119:111470. DOI:10.1016/j.msec.2020.111470.
[18]
Shi WZhang XBian L,et al. Alendronate crosslinked chitosan/polycaprolactone scaffold for bone defects repairing[J]. Int J Biol Macromol2022204:441-456. DOI:10.1016/j.ijbiomac.2022.02.007.
[19]
Lin ZZhao CLei Z,et al. Epidermal stem cells maintain stemness via a biomimetic micro/nanofiber scaffold that promotes wound healing by activating the Notch signaling pathway[J]. Stem Cell Res Ther202112(1):341. DOI:10.1186/s13287-021-02418-2.
[20]
Das AAdhikary SChowdhury AR,et al. Leveraging substrate stiffness to promote stem cell asymmetric division via mechanotransduction-polarity protein axis and its bayesian regression analysis[J]. Rejuvenation Res202225(2):59-69. DOI:10.1089/rej.2021.0039.
[21]
Rezaei HRezaie ZSeifati SM,et al. Poly-phosphate increases SMC differentiation of mesenchymal stem cells on PLGA-polyurethane nanofibrous scaffold[J]. Cell Tissue Bank202021(3):495-505. DOI:10.1007/s10561-020-09836-1.
[22]
Song JETripathy NCha SR,et al. Three-dimensional duck′s feet collagen/PLGA scaffold for chondrification:Role of pore size and porosity[J]. J Biomater Sci Polym Ed201829(7/9):932-941. DOI:10.1080/09205063.2017.1394712.
[23]
Gangolli RADevlin SMGerstenhaber JA,et al. A bilayered poly(lactic-co-glycolic acid)scaffold provides differential cues for the differentiation of dental pulp stem cells[J]. Tissue Eng Part A201925(3/4):224-233. DOI:10.1089/ten.TEA.2018.0041.
[24]
Shafiee AKehtari MZarei Z,et al. An in situ hydrogel-forming scaffold loaded by PLGA microspheres containing carbon nanotube as a suitable niche for neural differentiation[J]. Mater Sci Eng C Mater Biol Appl2021120:111739. DOI:10.1016/j.msec.2020.111739.
[25]
Yang LGe Lvan Rijn P. Synergistic effect of cell-derived extracellular matrices and topography on osteogenesis of mesenchymal stem cells[J]. ACS Appl Mater Interfaces202012(23):25591-25603. DOI:10.1021/acsami.0c05012.
[26]
Hu JWang ZMiszuk JM,et al. Vanillin-bioglass cross-linked 3D porous chitosan scaffolds with strong osteopromotive and antibacterial abilities for bone tissue engineering[J]. Carbohydr Polym2021271:118440. DOI:10.1016/j.carbpol.2021.118440.
[27]
Zhang WChu GWang H,et al. Effects of matrix stiffness on the differentiation of multipotent stem cells[J]. Curr Stem Cell Res Ther202015(5):449-461. DOI:10.2174/1574888x15666200408114632.
[28]
Mousavi SJDoweidar MH. Role of mechanical cues in cell differentiation and proliferation:A 3D numerical model[J]. PLoS One201510(5):e0124529. DOI:10.1371/journal.pone.0124529.
[29]
Huebsch NArany PRMao AS,et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate[J]. Nat Mater20109(6):518-526. DOI:10.1038/nmat2732.
[30]
Liu NZhou MZhang Q,et al. Effect of substrate stiffness on proliferation and differentiation of periodontal ligament stem cells[J]. Cell Prolif201851(5):e12478. DOI:10.1111/cpr.12478.
[31]
Meng JBoschetto FYagi S,et al. Enhancing the bioactivity of melt electrowritten PLLA scaffold by convenient,green,and effective hydrophilic surface modification[J]. Mater Sci Eng C Mater Biol Appl2022135:112686. DOI:10.1016/j.msec.2022.112686.
[32]
Xu XZhou YZheng K,et al. 3D polycaprolactone/gelatin-oriented electrospun scaffolds promote periodontal regeneration[J]. ACS Appl Mater Interfaces202214(41):46145-46160. DOI:10.1021/acsami.2c03705.
[33]
Chen SGuo YLiu R,et al. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration[J]. Colloids Surf B Biointerfaces2018164:58-69. DOI:10.1016/j.colsurfb.2018.01.022.
[34]
Dabrowski BSwieszkowski WGodlinski D,et al. Highly porous titanium scaffolds for orthopaedic applications[J]. J Biomed Mater Res B Appl Biomater201095(1):53-61. DOI:10.1002/jbm.b.31682.
[35]
Lian MSun BHan Y,et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration[J]. Biomaterials2021274:120841. DOI:10.1016/j.biomaterials.2021.120841.
[36]
Khlusov IADekhtyar YSharkeev YP,et al. Nanoscale electrical potential and roughness of a calcium phosphate surface promotes the osteogenic phenotype of stromal cells[J]. Materials (Basel)201811(6):978. DOI:10.3390/ma11060978.
[37]
Chu GYuan ZZhu C,et al. Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein[J]. Acta Biomater201992:254-264. DOI:10.1016/j.actbio.2019.05.013.
[38]
Liu YLi XJiang C,et al. Clinical applications of concentrated growth factors membrane for sealing the socket in alveolar ridge preservation:A randomized controlled trial[J]. Int J Implant Dent20228(1):46. DOI:10.1186/s40729-022-00448-w.
[39]
Schlegel AKMöhler HBusch F,et al. Preclinical and clinical studies of a collagen membrane(Bio-Gide)[J]. Biomaterials199718(7):535-538. DOI:10.1016/s0142-9612(96)00175-5.
[40]
Mo JS. The role of extracellular biophysical cues in modulating the Hippo-YAP pathway[J]. BMB Rep201750(2):71-78. DOI:10.5483/bmbrep.2017.50.2.199.
[41]
Tonazzini IMasciullo CSavi E,et al. Neuronal contact guidance and YAP signaling on ultra-small nanogratings[J]. Sci Rep202010(1):3742. DOI:10.1038/s41598-020-60745-5.
[42]
Basu STotty NFIrwin MS,et al. Akt phosphorylates the Yes-associated protein,YAP,to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis[J]. Mol Cell200311(1):11-23. DOI:10.1016/s1097-2765(02)00776-1.
[43]
Zhao BLi LLei Q,et al. The Hippo-YAP pathway in organ size control and tumorigenesis:An updated version[J]. Genes Dev201024(9):862-874. DOI:10.1101/gad.1909210.
[44]
Wang DHe JHuang B,et al. Emerging role of the Hippo pathway in autophagy[J]. Cell Death Dis202011(10):880. DOI:10.1038/s41419-020-03069-6.
[45]
Mosaddad SASalari YAmookhteh S,et al. Response to mechanical cues by interplay of yap/taz transcription factors and key mechanical checkpoints of the cell:A comprehensive review[J]. Cell Physiol Biochem202155(1):33-60. DOI:10.33594/000000325.
[46]
Han PVaquette CAbdal-Hay A,et al. The mechanosensing and global DNA methylation of human osteoblasts on MEW fibers[J]. Nanomaterials(Basel)202111(11):2943. DOI:10.3390/nano11112943.
[47]
Chiou GJui ERhea AC,et al. Scaffold architecture and matrix strain modulate mesenchymal cell and microvascular growth and development in a time dependent manner[J]. Cell Mol Bioeng202013(5):507-526. DOI:10.1007/s12195-020-00648-7.
[48]
Elosegui-Artola AOria RChen Y,et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity[J]. Nat Cell Biol201618(5):540-548. DOI:10.1038/ncb3336.
[49]
McKee CHong YYao D,et al. Compression induced chondrogenic differentiation of embryonic stem cells in three-dimensional polydimethylsiloxane scaffolds[J]. Tissue Eng Part A201723(9/10):426-435. DOI:10.1089/ten.TEA.2016.0376.
[50]
Totaro APanciera TPiccolo S. YAP/TAZ upstream signals and downstream responses[J]. Nat Cell Biol201820(8):888-899. DOI:10.1038/s41556-018-0142-z.
[51]
Feng QGao HWen H,et al. Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis:Insights from a microgel model[J]. Acta Biomater2020113:393-406. DOI:10.1016/j.actbio.2020.06.046.
[52]
Le VLee JChaterji S,et al. Syndecan-1 in mechanosensing of nanotopological cues in engineered materials[J]. Biomaterials2018155:13-24. DOI:10.1016/j.biomaterials.2017.11.007.
[53]
Jorgenson AJChoi KMSicard D,et al. TAZ activation drives fibroblast spheroid growth,expression of profibrotic paracrine signals,and context-dependent ECM gene expression[J]. Am J Physiol Cell Physiol2017312(3):C277-C285. DOI:10.1152/ajpcell.00205.2016.
[54]
Li LYang SXu L,et al. Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin[J]. Acta Biomater201996:674-685. DOI:10.1016/j.actbio.2019.07.007.
[55]
Zhou QLyu SBertrand AA,et al. Stiffness of nanoparticulate mineralized collagen scaffolds triggers osteogenesis via mechanotransduction and canonical wnt signaling[J]. Macromol Biosci202121(3):e2000370. DOI:10.1002/mabi.202000370.
[56]
Shi WBian LWu Y,et al. Enhanced Bone Regeneration Using a ZIF-8-Loaded Fibrin Composite Scaffold[J]. Macromol Biosci202222(3):e2100416. DOI:10.1002/mabi.202100416.
[57]
Xie MFritch MHe Y,et al. Dynamic loading enhances chondrogenesis of human chondrocytes within a biodegradable resilient hydrogel[J]. Biomater Sci20219(14):5011-5024. DOI:10.1039/d1bm00413a.
[58]
Yang YWang DZhang C,et al. Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation[J]. Hum Cell202235(1):51-62. DOI:10.1007/s13577-021-00600-5.
[59]
Pathak MMNourse JLTran T,et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells[J]. Proc Natl Acad Sci U S A2014111(45):16148-16153. DOI:10.1073/pnas.1409802111.
[60]
Bao LCui XWang X,et al. Carbon nanotubes promote the development of intestinal organoids through regulating extracellular matrix viscoelasticity and intracellular energy metabolism[J]. ACS Nano202115(10):15858-15873. DOI:10.1021/acsnano.1c03707.
[61]
Mascharak SBenitez PLProctor AC,et al. YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography[J]. Biomaterials2017115:155-166. DOI:10.1016/j.biomaterials.2016.11.019.
[62]
Chen LWu CWei D,et al. Biomimetic mineralized microenvironment stiffness regulated BMSCs osteogenic differentiation through cytoskeleton mediated mechanical signaling transduction[J]. Mater Sci Eng C Mater Biol Appl2021119:111613. DOI:10.1016/j.msec.2020.111613.
[63]
Xiang SLi ZFritch MR,et al. Caveolin-1 mediates soft scaffold-enhanced adipogenesis of human mesenchymal stem cells[J]. Stem Cell Res Ther202112(1):347. DOI:10.1186/s13287-021-02356-z.
[64]
Guo SDebbi LZohar B,et al. Stimulating extracellular vesicles production from engineered tissues by mechanical forces[J]. Nano Lett202121(6):2497-2504. DOI:10.1021/acs.nanolett.0c04834.
[1] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[2] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[5] 康婵娟, 张海涛, 翟静洁. 胰管支架置入术治疗急性胆源性胰腺炎的效果及对患者肝功能、炎症因子水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 667-670.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[8] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[9] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[10] 马振威, 宋润夫, 王兵. ERCP胆道内支架与骑跨十二指肠乳头支架置入治疗不可切除肝门部胆管癌疗效的Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 807-812.
[11] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[12] 石阳, 于剑锋, 曹可, 翟志伟, 叶春祥, 王振军, 韩加刚. 可扩张金属支架置入联合新辅助化疗治疗完全梗阻性左半结肠癌围手术期并发症分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 464-471.
[13] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[14] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[15] 孙明策, 韩世焕. 海藻酸盐水凝胶支架在颅骨缺损修复中的应用进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 310-314.
阅读次数
全文


摘要