[1] |
Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche[J]. Cell Stem Cell, 2015, 16(3):239-253. DOI: 10.1016/j.stem.2015.02.019.
|
[2] |
Guilak F, Cohen DM, Estes BT,et al. Control of stem cell fate by physical interactions with the extracellular matrix[J]. Cell Stem Cell, 2009, 5(1):17-26. DOI: 10.1016/j.stem.2009.06.016.
|
[3] |
Cunniffe GM, Díaz-Payno PJ, Sheehy EJ,et al. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues[J]. Biomaterials, 2019, 188:63-73. DOI: 10.1016/j.biomaterials.2018.09.044.
|
[4] |
Mertz AF, Che Y, Banerjee S,et al. Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces[J]. Proc Natl Acad Sci U S A, 2013, 110(3):842-847. DOI: 10.1073/pnas.1217279110.
|
[5] |
Huang G, Greenspan DS. ECM roles in the function of metabolic tissues[J]. Trends Endocrinol Metab, 2012, 23(1):16-22. DOI: 10.1016/j.tem.2011.09.006.
|
[6] |
Elosegui-Artola A, Bazellières E, Allen MD,et al. Rigidity sensing and adaptation through regulation of integrin types[J]. Nat Mater, 2014, 13(6):631-637. DOI: 10.1038/nmat3960.
|
[7] |
Urbanczyk M, Layland SL, Schenke-Layland K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues[J]. Matrix Biol, 2020, 85/86:1-14. DOI: 10.1016/j.matbio.2019.11.005.
|
[8] |
Chakraborty S, Njah K, Pobbati AV,et al. Agrin as a mechanotransduction signal regulating yap through the hippo pathway[J]. Cell Rep, 2017, 18(10):2464-2479. DOI: 10.1016/j.celrep.2017.02.041.
|
[9] |
|
[10] |
Aragona M, Panciera T, Manfrin A,et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors[J]. Cell, 2013, 154(5):1047-1059. DOI: 10.1016/j.cell.2013.07.042.
|
[11] |
Dupont S, Morsut L, Aragona M,et al. Role of YAP/TAZ in mechanotransduction[J]. Nature, 2011, 474(7350):179-183. DOI: 10.1038/nature10137.
|
[12] |
Gouveia RM, Vajda F, Wibowo JA,et al. YAP,ΔNp63,and β-catenin signaling pathways are involved in the modulation of corneal epithelial stem cell phenotype induced by substrate stiffness[J]. Cells, 2019, 8(4):347. DOI: 10.3390/cells8040347.
|
[13] |
Swanson WB, Omi M, Woodbury SM,et al. Scaffold pore curvature influences ΜSC fate through differential cellular organization and YAP/TAZ activity[J]. Int J Mol Sci, 2022, 23(9):4499. DOI: 10.3390/ijms23094499.
|
[14] |
Chen Z, Bachhuka A, Wei F,et al. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration[J]. Nanoscale, 2017, 9(46):18129-18152. DOI: 10.1039/c7nr05913b.
|
[15] |
Ma J, Li J, Hu S,et al. Collagen modified anisotropic PLA scaffold as a base for peripheral nerve regeneration[J]. Macromol Biosci, 2022, 22(7):e2200119. DOI: 10.1002/mabi.202200119.
|
[16] |
Wan S, Fu X, Ji Y,et al. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds[J]. Biomaterials, 2018, 171:107-117. DOI: 10.1016/j.biomaterials.2018.04.035.
|
[17] |
Tang H, Yi B, Wang X,et al. Understanding the cellular responses based on low-density electrospun fiber networks[J]. Mater Sci Eng C Mater Biol Appl, 2021, 119:111470. DOI: 10.1016/j.msec.2020.111470.
|
[18] |
Shi W, Zhang X, Bian L,et al. Alendronate crosslinked chitosan/polycaprolactone scaffold for bone defects repairing[J]. Int J Biol Macromol, 2022, 204:441-456. DOI: 10.1016/j.ijbiomac.2022.02.007.
|
[19] |
Lin Z, Zhao C, Lei Z,et al. Epidermal stem cells maintain stemness via a biomimetic micro/nanofiber scaffold that promotes wound healing by activating the Notch signaling pathway[J]. Stem Cell Res Ther, 2021, 12(1):341. DOI: 10.1186/s13287-021-02418-2.
|
[20] |
Das A, Adhikary S, Chowdhury AR,et al. Leveraging substrate stiffness to promote stem cell asymmetric division via mechanotransduction-polarity protein axis and its bayesian regression analysis[J]. Rejuvenation Res, 2022, 25(2):59-69. DOI: 10.1089/rej.2021.0039.
|
[21] |
Rezaei H, Rezaie Z, Seifati SM,et al. Poly-phosphate increases SMC differentiation of mesenchymal stem cells on PLGA-polyurethane nanofibrous scaffold[J]. Cell Tissue Bank, 2020, 21(3):495-505. DOI: 10.1007/s10561-020-09836-1.
|
[22] |
Song JE, Tripathy N, Cha SR,et al. Three-dimensional duck′s feet collagen/PLGA scaffold for chondrification:Role of pore size and porosity[J]. J Biomater Sci Polym Ed, 2018, 29(7/9):932-941. DOI: 10.1080/09205063.2017.1394712.
|
[23] |
Gangolli RA, Devlin SM, Gerstenhaber JA,et al. A bilayered poly(lactic-co-glycolic acid)scaffold provides differential cues for the differentiation of dental pulp stem cells[J]. Tissue Eng Part A, 2019, 25(3/4):224-233. DOI: 10.1089/ten.TEA.2018.0041.
|
[24] |
Shafiee A, Kehtari M, Zarei Z,et al. An in situ hydrogel-forming scaffold loaded by PLGA microspheres containing carbon nanotube as a suitable niche for neural differentiation[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120:111739. DOI: 10.1016/j.msec.2020.111739.
|
[25] |
Yang L, Ge L, van Rijn P. Synergistic effect of cell-derived extracellular matrices and topography on osteogenesis of mesenchymal stem cells[J]. ACS Appl Mater Interfaces, 2020, 12(23):25591-25603. DOI: 10.1021/acsami.0c05012.
|
[26] |
Hu J, Wang Z, Miszuk JM,et al. Vanillin-bioglass cross-linked 3D porous chitosan scaffolds with strong osteopromotive and antibacterial abilities for bone tissue engineering[J]. Carbohydr Polym, 2021, 271:118440. DOI: 10.1016/j.carbpol.2021.118440.
|
[27] |
Zhang W, Chu G, Wang H,et al. Effects of matrix stiffness on the differentiation of multipotent stem cells[J]. Curr Stem Cell Res Ther, 2020, 15(5):449-461. DOI: 10.2174/1574888x15666200408114632.
|
[28] |
Mousavi SJ, Doweidar MH. Role of mechanical cues in cell differentiation and proliferation:A 3D numerical model[J]. PLoS One, 2015, 10(5):e0124529. DOI: 10.1371/journal.pone.0124529.
|
[29] |
Huebsch N, Arany PR, Mao AS,et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate[J]. Nat Mater, 2010, 9(6):518-526. DOI: 10.1038/nmat2732.
|
[30] |
Liu N, Zhou M, Zhang Q,et al. Effect of substrate stiffness on proliferation and differentiation of periodontal ligament stem cells[J]. Cell Prolif, 2018, 51(5):e12478. DOI: 10.1111/cpr.12478.
|
[31] |
Meng J, Boschetto F, Yagi S,et al. Enhancing the bioactivity of melt electrowritten PLLA scaffold by convenient,green,and effective hydrophilic surface modification[J]. Mater Sci Eng C Mater Biol Appl, 2022, 135:112686. DOI: 10.1016/j.msec.2022.112686.
|
[32] |
Xu X, Zhou Y, Zheng K,et al. 3D polycaprolactone/gelatin-oriented electrospun scaffolds promote periodontal regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(41):46145-46160. DOI: 10.1021/acsami.2c03705.
|
[33] |
Chen S, Guo Y, Liu R,et al. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration[J]. Colloids Surf B Biointerfaces, 2018, 164:58-69. DOI: 10.1016/j.colsurfb.2018.01.022.
|
[34] |
Dabrowski B, Swieszkowski W, Godlinski D,et al. Highly porous titanium scaffolds for orthopaedic applications[J]. J Biomed Mater Res B Appl Biomater, 2010, 95(1):53-61. DOI: 10.1002/jbm.b.31682.
|
[35] |
Lian M, Sun B, Han Y,et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration[J]. Biomaterials, 2021, 274:120841. DOI: 10.1016/j.biomaterials.2021.120841.
|
[36] |
Khlusov IA, Dekhtyar Y, Sharkeev YP,et al. Nanoscale electrical potential and roughness of a calcium phosphate surface promotes the osteogenic phenotype of stromal cells[J]. Materials (Basel), 2018, 11(6):978. DOI: 10.3390/ma11060978.
|
[37] |
Chu G, Yuan Z, Zhu C,et al. Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein[J]. Acta Biomater, 2019, 92:254-264. DOI: 10.1016/j.actbio.2019.05.013.
|
[38] |
Liu Y, Li X, Jiang C,et al. Clinical applications of concentrated growth factors membrane for sealing the socket in alveolar ridge preservation:A randomized controlled trial[J]. Int J Implant Dent, 2022, 8(1):46. DOI: 10.1186/s40729-022-00448-w.
|
[39] |
Schlegel AK, Möhler H, Busch F,et al. Preclinical and clinical studies of a collagen membrane(Bio-Gide)[J]. Biomaterials, 1997, 18(7):535-538. DOI: 10.1016/s0142-9612(96)00175-5.
|
[40] |
Mo JS. The role of extracellular biophysical cues in modulating the Hippo-YAP pathway[J]. BMB Rep, 2017, 50(2):71-78. DOI: 10.5483/bmbrep.2017.50.2.199.
|
[41] |
Tonazzini I, Masciullo C, Savi E,et al. Neuronal contact guidance and YAP signaling on ultra-small nanogratings[J]. Sci Rep, 2020, 10(1):3742. DOI: 10.1038/s41598-020-60745-5.
|
[42] |
Basu S, Totty NF, Irwin MS,et al. Akt phosphorylates the Yes-associated protein,YAP,to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis[J]. Mol Cell, 2003, 11(1):11-23. DOI: 10.1016/s1097-2765(02)00776-1.
|
[43] |
Zhao B, Li L, Lei Q,et al. The Hippo-YAP pathway in organ size control and tumorigenesis:An updated version[J]. Genes Dev, 2010, 24(9):862-874. DOI: 10.1101/gad.1909210.
|
[44] |
Wang D, He J, Huang B,et al. Emerging role of the Hippo pathway in autophagy[J]. Cell Death Dis, 2020, 11(10):880. DOI: 10.1038/s41419-020-03069-6.
|
[45] |
Mosaddad SA, Salari Y, Amookhteh S,et al. Response to mechanical cues by interplay of yap/taz transcription factors and key mechanical checkpoints of the cell:A comprehensive review[J]. Cell Physiol Biochem, 2021, 55(1):33-60. DOI: 10.33594/000000325.
|
[46] |
Han P, Vaquette C, Abdal-Hay A,et al. The mechanosensing and global DNA methylation of human osteoblasts on MEW fibers[J]. Nanomaterials(Basel), 2021, 11(11):2943. DOI: 10.3390/nano11112943.
|
[47] |
Chiou G, Jui E, Rhea AC,et al. Scaffold architecture and matrix strain modulate mesenchymal cell and microvascular growth and development in a time dependent manner[J]. Cell Mol Bioeng, 2020, 13(5):507-526. DOI: 10.1007/s12195-020-00648-7.
|
[48] |
Elosegui-Artola A, Oria R, Chen Y,et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity[J]. Nat Cell Biol, 2016, 18(5):540-548. DOI: 10.1038/ncb3336.
|
[49] |
McKee C, Hong Y, Yao D,et al. Compression induced chondrogenic differentiation of embryonic stem cells in three-dimensional polydimethylsiloxane scaffolds[J]. Tissue Eng Part A, 2017, 23(9/10):426-435. DOI: 10.1089/ten.TEA.2016.0376.
|
[50] |
Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses[J]. Nat Cell Biol, 2018, 20(8):888-899. DOI: 10.1038/s41556-018-0142-z.
|
[51] |
Feng Q, Gao H, Wen H,et al. Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis:Insights from a microgel model[J]. Acta Biomater, 2020, 113:393-406. DOI: 10.1016/j.actbio.2020.06.046.
|
[52] |
Le V, Lee J, Chaterji S,et al. Syndecan-1 in mechanosensing of nanotopological cues in engineered materials[J]. Biomaterials, 2018, 155:13-24. DOI: 10.1016/j.biomaterials.2017.11.007.
|
[53] |
Jorgenson AJ, Choi KM, Sicard D,et al. TAZ activation drives fibroblast spheroid growth,expression of profibrotic paracrine signals,and context-dependent ECM gene expression[J]. Am J Physiol Cell Physiol, 2017, 312(3):C277-C285. DOI: 10.1152/ajpcell.00205.2016.
|
[54] |
Li L, Yang S, Xu L,et al. Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin[J]. Acta Biomater, 2019, 96:674-685. DOI: 10.1016/j.actbio.2019.07.007.
|
[55] |
Zhou Q, Lyu S, Bertrand AA,et al. Stiffness of nanoparticulate mineralized collagen scaffolds triggers osteogenesis via mechanotransduction and canonical wnt signaling[J]. Macromol Biosci, 2021, 21(3):e2000370. DOI: 10.1002/mabi.202000370.
|
[56] |
Shi W, Bian L, Wu Y,et al. Enhanced Bone Regeneration Using a ZIF-8-Loaded Fibrin Composite Scaffold[J]. Macromol Biosci, 2022, 22(3):e2100416. DOI: 10.1002/mabi.202100416.
|
[57] |
Xie M, Fritch M, He Y,et al. Dynamic loading enhances chondrogenesis of human chondrocytes within a biodegradable resilient hydrogel[J]. Biomater Sci, 2021, 9(14):5011-5024. DOI: 10.1039/d1bm00413a.
|
[58] |
Yang Y, Wang D, Zhang C,et al. Piezo1 mediates endothelial atherogenic inflammatory responses via regulation of YAP/TAZ activation[J]. Hum Cell, 2022, 35(1):51-62. DOI: 10.1007/s13577-021-00600-5.
|
[59] |
Pathak MM, Nourse JL, Tran T,et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells[J]. Proc Natl Acad Sci U S A, 2014, 111(45):16148-16153. DOI: 10.1073/pnas.1409802111.
|
[60] |
Bao L, Cui X, Wang X,et al. Carbon nanotubes promote the development of intestinal organoids through regulating extracellular matrix viscoelasticity and intracellular energy metabolism[J]. ACS Nano, 2021, 15(10):15858-15873. DOI: 10.1021/acsnano.1c03707.
|
[61] |
Mascharak S, Benitez PL, Proctor AC,et al. YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography[J]. Biomaterials, 2017, 115:155-166. DOI: 10.1016/j.biomaterials.2016.11.019.
|
[62] |
Chen L, Wu C, Wei D,et al. Biomimetic mineralized microenvironment stiffness regulated BMSCs osteogenic differentiation through cytoskeleton mediated mechanical signaling transduction[J]. Mater Sci Eng C Mater Biol Appl, 2021, 119:111613. DOI: 10.1016/j.msec.2020.111613.
|
[63] |
Xiang S, Li Z, Fritch MR,et al. Caveolin-1 mediates soft scaffold-enhanced adipogenesis of human mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1):347. DOI: 10.1186/s13287-021-02356-z.
|
[64] |
Guo S, Debbi L, Zohar B,et al. Stimulating extracellular vesicles production from engineered tissues by mechanical forces[J]. Nano Lett, 2021, 21(6):2497-2504. DOI: 10.1021/acs.nanolett.0c04834.
|