[1] |
Kassebaum N, Bernabé E, Dahiya M,et al. Global burden of untreated caries:A systematic review and metaregression [J]. J Dent Res, 2015, 94(5):650-658. DOI: 10.1177/0022034515573272.
|
[2] |
Yi SM, Zhu JL, Fu LL,et al. Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane [J]. Int J Food Microbiol, 2010, 144(1):111-117. DOI: 10.1016/j.ijfoodmicro.2010.09.005.
|
[3] |
Koo H, Hayacibara M, Schobel B,et al. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol [J]. J Antimicrob Chemother, 2003, 52(5):782-789. DOI: 10.1093/jac/dkg449.
|
[4] |
Plaper A, Golob M, Hafner I,et al. Characterization of quercetin binding site on DNA gyrase [J]. Biochem Biophys Res Commun, 2003, 306(2):530-536. DOI: 10.1016/s0006-291x(03)01006-4.
|
[5] |
Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans[J]. Antimicrob Agents Chemother, 2011, 55(3):1229-1236. DOI: 10.1128/AAC.01016-10.
|
[6] |
Wu D, Kong Y, Han C,et al. D-Alanine:D-alanine ligase as a new target for the flavonoids quercetin and apigenin [J]. Int J Antimicrob Agents, 2008, 32(5):421-426. DOI: 10.1016/j.ijantimicag.2008.06.010.
|
[7] |
Webb MR, Ebeler SE. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds:Structural determinates of activity [J]. Biochem J, 2004, 384(3):527-541. DOI: 10.1042/BJ20040474.
|
[8] |
Ezraty B, Gennaris A, Barras F,et al. Oxidative stress,protein damage and repair in bacteria [J]. Nat Rev Microbiol, 2017, 15(7):385-396. DOI: 10.1038/nrmicro.2017.26.
|
[9] |
Zheng D, Huang C, Huang H,et al. Antibacterial mechanism of curcumin:A review[J]. Chem Biodivers, 2020, 17(8):e2000171. DOI: 10.1002/cbdv.202000171.
|
[10] |
Pourhajibagher M, Kazemian H, Chiniforush N,et al. Exploring different photosensitizers to optimize elimination of planktonic and biofilm forms of Enterococcus faecalis from infected root canal during antimicrobial photodynamic therapy[J]. Photodiagnosis Photodyn Ther, 2018, 24:206-211. DOI: 10.1016/j.pdpdt.2018.09.014.
|
[11] |
Schaible UE, Kaufmann SH. Iron and microbial infection [J]. Nat Rev Microbiol, 2004, 2(12):946-953. DOI: 10.1038/nrmicro1046.
|
[12] |
Mira L, Tereza Fernandez M, Santos M,et al. Interactions of flavonoids with iron and copper ions:A mechanism for their antioxidant activity [J]. Free Radic Res, 2002, 36(11):1199-1208. DOI: 10.1080/1071576021000016463.
|
[13] |
Lee P, Tan KS. Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence [J]. Arch Oral Biol, 2015, 60(3):393-399. DOI: 10.1016/j.archoralbio.2014.11.014.
|
[14] |
Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments [J]. Nat Rev Microbiol, 2019, 17(6):371-382. DOI: 10.1038/s41579-019-0186-5.
|
[15] |
Chakraborty P, Dastidar DG, Paul P,et al. Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine:A potential approach for sustainable management of biofilm [J]. Arch Microbiol, 2020, 202(3):623-635. DOI: 10.1007/s00203-019-01775-0.
|
[16] |
Viszwapriya D, Subramenium GA, Radhika S,et al. Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes [J]. Antonie Van Leeuwenhoek, 2017, 110(1):153-165. DOI: 10.1007/s10482-016-0785-3.
|
[17] |
He Z, Huang Z, Jiang W,et al. Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms [J]. Front Microbiol, 2019, 10:2241. DOI: 10.3389/fmicb.2019.02241.
|
[18] |
Shu Y, Liu Y, Li L,et al. Antibacterial activity of quercetin on oral infectious pathogens [J]. Afr J Microbiol Res, 2011, 5(30):5358-5361. DOI: 10.5897/AJMR11.849.
|
[19] |
He Z, Zhang X, Song Z,et al. Quercetin inhibits virulence properties of Porphyromas gingivalis in periodontal disease [J]. Sci Rep, 2020, 10(1):18313. DOI: 10.1038/s41598-020-74977-y.
|
[20] |
Qayyum S, Sharma D, Bisht D,et al. Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress [J]. Microb Pathog, 2019, 126:205-211. DOI: 10.1016/j.micpath.2018.11.013.
|
[21] |
Qi W, Qi W, Xiong D,et al. Quercetin:Its antioxidant mechanism,antibacterial properties and potential application in prevention and control of toxipathy[J]. Molecules, 2022, 27(19):6545. DOI: 10.3390/molecules27196545.
|
[22] |
Hu P, Lv B, Yang K,et al. Discovery of myricetin as an inhibitor against Streptococcus mutans and an anti-adhesion approach to biofilm formation [J]. Int J Med Microbiol, 2021, 311(4):151512. DOI: 10.1016/j.ijmm.2021.151512.
|
[23] |
Falsetta ML, Klein MI, Lemos JA,et al. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo[J]. Antimicrob Agents Chemother, 2012, 56(12):6201-6211. DOI: 10.1128/AAC.01381-12.
|
[24] |
Gutiérrez-Venegas G, Luna OA, Arreguín-Cano JA,et al. Myricetin blocks lipoteichoic acid-induced COX-2 expression in human gingival fibroblasts [J]. Cell Mol Biol Lett, 2014, 19(1):126-139. DOI: 10.2478/s11658-014-0186-4.
|
[25] |
Motlhatlego KE, Abdalla MA, Leonard CM,et al. Inhibitory effect of Newtonia extracts and myricetin-3-O-rhamnoside (myricitrin) on bacterial biofilm formation[J]. BMC Complement Med Ther, 2020, 20(1):1-10. DOI: 10.1186/s12906-020-03139-4.
|
[26] |
Franklin SJ, Myrdal PB. Solid-state and solution characterization of myricetin [J]. AAPS PharmSciTech, 2015, 16(6):1400-1408. DOI: 10.1208/s12249-015-0329-6.
|
[27] |
Chen H, Xie S, Gao J,et al. Flavonoid baicalein suppresses oral biofilms and protects enamel hardness to combat dental caries [J]. Int J Mol Sci, 2022, 23(18):10593. DOI: 10.3390/ijms231810593.
|
[28] |
|
[29] |
Koo H, Schobel B, Scott-Anne K,et al. Apigenin and tt-farnesol with fluoride effects on S.mutans biofilms and dental caries [J]. J Dent Res, 2005, 84(11):1016-1020. DOI: 10.1177/154405910508401109.
|
[30] |
Veloz JJ, Alvear M, Salazar LA. Antimicrobial and antibiofilm activity against Streptococcus mutans of individual and mixtures of the main polyphenolic compounds found in Chilean propolis [J]. Biomed Res Int, 2019:7602343. DOI: 10.1155/2019/7602343.
|
[31] |
Oncag O, Cogulu D, Uzel A,et al. Efficacy of propolis as an intracanal medicament against Enterococcus faecalis[J]. Gen Dent,2006,54(5):319-322.
|
[32] |
Melok AL, Lee LH, Mohamed Yussof SA,et al. Green tea polyphenol epigallocatechin-3-gallate-stearate inhibits the growth of Streptococcus mutans:A promising new approach in caries prevention [J]. Dent J (Basel), 2018, 6(3):38. DOI: 10.3390/dj6030038.
|
[33] |
Asahi Y, Noiri Y, Miura J,et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms [J]. J App Microbiol, 2014, 116(5):1164-1171. DOI: 10.1111/jam.12458.
|
[34] |
Vaillancourt K, LeBel G, Pellerin G,et al. Effects of the licorice isoflavans licoricidin and glabridin on the growth,adherence properties,and acid production of Streptococcus mutans,and assessment of their biocompatibility [J]. Antibiotics (Basel), 2021, 10(2):163. DOI: 10.3390/antibiotics10020163.
|
[35] |
Grenier D, Marcoux E, Azelmat J,et al. Biocompatible combinations of nisin and licorice polyphenols exert synergistic bactericidal effects against Enterococcus faecalis and inhibit NF-κB activation in monocytes [J]. AMB Express, 2020, 10(1):120. DOI: 10.1186/s13568-020-01056-w.
|
[36] |
Marcoux E, Lagha AB, Gauthier P,et al. Antimicrobial activities of natural plant compounds against endodontic pathogens and biocompatibility with human gingival fibroblasts [J]. Arch Oral Biol, 2020, 116:104734. DOI: 10.1016/j.archoralbio.2020.104734.
|
[37] |
Yuen MK, Wong RW, Hägg U,et al. Antimicrobial activity of traditional Chinese medicines on common oral bacteria [J]. Chinese Medicine, 2011, 2(2):37. DOI: 10.4236/cm.2011.22007.
|
[38] |
Zhang L, Xue J, Li J,et al. Effects of Galla chinensis on inhibition of demineralization of regular bovine enamel or enamel disposed of organic matrix [J]. Arch Oral Biol, 2009, 54(9):817-822. DOI: 10.1016/j.archoralbio.2009.06.007.
|
[39] |
Yang S, Liu Y, Mao J,et al. The antibiofilm and collagen-stabilizing effects of proanthocyanidin as an auxiliary endodontic irrigant [J]. Int Endod J, 2020, 53(6):824-833. DOI: 10.1111/iej.13280.
|
[40] |
Epasinghe DJ, Yiu CKY, Burrow MF,et al. The inhibitory effect of proanthocyanidin on soluble and collagen-bound proteases [J]. J Dent, 2013, 41(9):832-839. DOI: 10.1016/j.jdent.2013.06.002.
|
[41] |
Trentin DS, Silva DB, Frasson AP,et al. Natural green coating inhibits adhesion of clinically important bacteria [J]. Sci Rep, 2015, 5(1):8287. DOI: 10.1038/srep08287.
|
[42] |
Li B, Pan T, Lin H,et al. The enhancing antibiofilm activity of curcumin on Streptococcus mutans strains from severe early childhood caries [J]. BMC Microbiol, 2020, 20(1):286. DOI: 10.1186/s12866-020-01975-5.
|
[43] |
Li X, Yin L, Ramage G,et al. Assessing the impact of curcumin on dual-species biofilms formed by Streptococcus mutans and Candida albicans[J]. Microbiologyopen, 2019, 8(12):e937. DOI: 10.1002/mbo3.937.
|
[44] |
|
[45] |
Kumbar VM, Peram MR, Kugaji MS,et al. Effect of curcumin on growth,biofilm formation and virulence factor gene expression of Porphyromonas gingivalis[J]. Odontology, 2021, 109(1):18-28. DOI: 10.1007/s10266-020-00514-y.
|
[46] |
Sakaue Y, Domon H, Oda M,et al. Anti-biofilm and bactericidal effects of magnolia bark-derived magnolol and honokiol on Streptococcus mutans[J]. Microbiol Immunol, 2016, 60(1):10-16. DOI: 10.1111/1348-0421.12343.
|
[47] |
|
[48] |
Lu SH, Hsu WL, Chen TH,et al. Activation of Nrf2/HO-1 signaling pathway involves the anti-inflammatory activity of magnolol in Porphyromonas gingivalis lipopolysaccharide-stimulated mouse RAW 264.7 macrophages[J]. Int Immunopharmacol, 2015, 29(2):770-778. DOI: 10.1016/j.intimp.2015.08.042.
|
[49] |
Wu J, Fan Y, Wang X,et al. Effects of the natural compound,oxyresveratrol,on the growth of Streptococcus mutans,and on biofilm formation,acid production,and virulence gene expression [J]. Eur J Oral Sci, 2020, 128(1):18-26. DOI: 10.1111/eos.12667.
|
[50] |
Corrêa M, Pires P, Ribeiro F,et al. Systemic treatment with resveratrol and/or curcumin reduces the progression of experimental periodontitis in rats [J]. J Periodontal Res, 2017, 52(2):201-209. DOI: 10.1111/jre.12382.
|
[51] |
Niu Y, Wang K, Zheng S,et al. Antibacterial effect of caffeic acid phenethyl ester on cariogenic bacteria and Streptococcus mutans biofilms [J]. Antimicrobial Agents Chemother, 2020, 64(9):e00251-20. DOI: 10.1128/AAC.00251-20.
|
[52] |
Yiğit U, Kırzıoğlu FY, Uğuz AC,et al. Is caffeic acid phenethyl ester more protective than doxycycline in experimental periodontitis?[J]. Arch Oral Biol, 2017, 81:61-68. DOI: 10.1016/j.archoralbio.2017.04.017.
|
[53] |
Fernández-Babiano I, Navarro-Pérez ML, Pérez-Giraldo C,et al. Antibacterial and antibiofilm activity of carvacrol against oral pathogenic bacteria [J]. Metabolites, 2022, 12(12):1255. DOI: 10.3390/metabo12121255.
|
[54] |
Rahim ZHA, Shaikh S, Ismail WNHW,et al. The effect of selected plant extracts on the development of single-species dental biofilms [J]. J Coll Physicians Surg Pak,2014,24(11):796-801.
|
[55] |
Bordini EAF, Tonon CC, Francisconi RS,et al. Antimicrobial effects of terpinen-4-ol against oral pathogens and its capacity for the modulation of gene expression [J]. Biofouling, 2018, 34(7):815-825. DOI: 10.1080/08927014.2018.1504926.
|
[56] |
Mogen AB, Chen F, Ahn SJ,et al. Pluronics-formulated farnesol promotes efficient killing and demonstrates novel interactions with Streptococcus mutans biofilms [J]. PloS One, 2015, 10(7):e0133886. DOI: 10.1371/journal.pone.0133886.
|
[57] |
Fernandes RA, Monteiro DR, Arias LS,et al. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol:A quantitative evaluation [J]. Biofouling, 2016, 32(3):329-338. DOI: 10.1080/08927014.2016.1144053.
|
[58] |
Priya A, Kumar CBM, Valliammai A,et al. Usnic acid deteriorates acidogenicity,acidurance and glucose metabolism of Streptococcus mutans through downregulation of two-component signal transduction systems[J]. Sci Rep, 2021, 11(1):1-15. DOI: 10.1038/s41598-020-80338-6.
|
[59] |
Zhou L, Ding Y, Chen W,et al. The in vitro study of ursolic acid and oleanolic acid inhibiting cariogenic microorganisms as well as biofilm [J]. Oral Dis, 2013, 19(5):494-500. DOI: 10.1111/odi.12031.
|
[60] |
Park SN, Lim YK, Choi MH,et al. Antimicrobial mechanism of oleanolic and ursolic acids on Streptococcus mutans UA159[J]. Curr Microbiol, 2018, 75(1):11-19. DOI: 10.1007/s00284-017-1344-5.
|
[61] |
Cao X, Ye Q, Fan M,et al. Antimicrobial effects of the ginsenoside Rh2 on monospecies and multispecies cariogenic biofilms [J]. J Appl Microbiol, 2019, 126(3):740-751. DOI: 10.1111/jam.14178.
|
[62] |
|
[63] |
|
[64] |
Zhou Y, Guan X, Zhu W,et al. Capsaicin inhibits Porphyromonas gingivalis growth,biofilm formation,gingivomucosal inflammatory cytokine secretion,and in vitro osteoclastogenesis [J]. Eur J Clin Microbiol Infect Dis, 2014, 33(2):211-219. DOI: 10.1007/s10096-013-1947-0.
|
[65] |
Hannah JJ, Johnson JD, Kuftinec MM. Long-term clinical evaluation of toothpaste and oral rinse containing sanguinaria extract in controlling plaque,gingival inflammation,and sulcular bleeding during orthodontic treatment [J]. Am J Orthod Dentofacial Orthop, 1989, 96(3):199-207. DOI: 10.1016/0889-5406(89)90456-3.
|
[66] |
Mascarenhas AK, Allen CM, Loudon J. The association between Viadent ® use and oral leukoplakia [J]. Epidemiology, 2001, 12(6):741-743. DOI: 10.1097/00001648-200111000-00024.
|
[67] |
Dziedzic A, Wojtyczka RD, Kubina R. Inhibition of oral Streptococci growth induced by the complementary action of berberine chloride and antibacterial compounds [J]. Molecules, 2015, 20(8):13705-13724. DOI: 10.3390/molecules200813705.
|
[68] |
Wei GX, Xu X, Wu CD. In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures [J]. Arch Oral Biol, 2011, 56(6):565-572. DOI: 10.1016/j.archoralbio.2010.11.021.
|
[69] |
Chen L, Bu Q, Xu H,et al. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro[J]. Microbiol Res, 2016, 186-187:44-51. DOI: 10.1016/j.micres.2016.03.003.
|
[70] |
Zhang R, Yang J, Wu J,et al. Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regeneration [J]. Eur J Pharmacol, 2019, 851:144-150. DOI: 10.1016/j.ejphar.2019.02.026.
|
[71] |
Yan Y, Li X, Zhang C,et al. Research progress on antibacterial activities and mechanisms of natural alkaloids:A review[J]. Antibiotics(Basel), 2021, 10(3):318. DOI: 10.3390/antibiotics10030318.
|
[72] |
Folliero V, Dell′Annunziata F, Roscetto E,et al. Rhein:A novel antibacterial compound against Streptococcus mutans infection [J]. Microbiol Res, 2022, 261:127062. DOI: 10.1016/j.micres.2022.127062.
|
[73] |
Kommerein N, Vierengel N, Groß J,et al. Antiplanktonic and antibiofilm activity of Rheum palmatum against Streptococcus oralis and Porphyromonas gingivalis[J]. Microorganisms, 2022, 10(5):965. DOI: 10.3390/microorganisms10050965.
|
[74] |
Balasubramanian A, Vasudevan S, Shanmugam K,et al. Combinatorial effects of trans-cinnamaldehyde with fluoride and chlorhexidine on Streptococcus mutans[J]. J Appl Microbiol, 2021, 130(2):382-393. DOI: 10.1111/jam.14794.
|
[75] |
Hu M, Kalimuthu S, Zhang C,et al. Trans-cinnamaldehyde-biosurfactant complex as a potent agent against Enterococcus faecalis biofilms [J]. Pharmaceutics, 2022, 14(11):2355. DOI: 10.3390/pharmaceutics14112355.
|