切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 188 -196. doi: 10.3877/cma.j.issn.1674-1366.2023.03.006

预防口腔医学专栏·综述

植物源性天然产物在口腔细菌感染性疾病中的研究进展
李懿雪1, 潘婷1, 林焕彩1, 周燕1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2023-04-08 出版日期:2023-02-21
  • 通信作者: 周燕

Research progress of plant-derived natural products against oral bacterial infectious disease

Yixue Li1, Ting Pan1, Huancai Lin1, Yan Zhou1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2023-04-08 Published:2023-02-21
  • Corresponding author: Yan Zhou
  • Supported by:
    Joint Fund of Provincial Enterprise of Guangdong-General Program(2022A1515220125)
引用本文:

李懿雪, 潘婷, 林焕彩, 周燕. 植物源性天然产物在口腔细菌感染性疾病中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 188-196.

Yixue Li, Ting Pan, Huancai Lin, Yan Zhou. Research progress of plant-derived natural products against oral bacterial infectious disease[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2023, 17(03): 188-196.

天然产物是来源于自然界中具有药理生物活性的化合物。其中,来源于植物的天然产物具有抗菌作用广、细胞毒性小和生物相容性好等特点而受到关注。植物源性天然产物主要包括多酚类、生物碱类、萜类、醌类和醛类化合物,它们可以通过损伤细菌膜结构、抑制细菌酶活性、诱导氧化应激反应、促进铁离子的螯合和抑制细菌二元信号通路等途径抗菌。研究发现,植物源性天然产物可以抑制变异链球菌、牙龈卟啉单胞菌和粪肠球菌等常见的口腔致病菌。本文就植物源性天然产物的抗菌机制及其在口腔感染性疾病中的相关应用作一综述。

Natural products are compounds derived from nature that are pharmacologically bioactive. Among them, plant-derived natural products have attracted attention for their wide antibacterial effect, low cytotoxicity, and good biocompatibility. Plant-derived natural products mainly include polyphenols, alkaloids, terpenoids, quinones and aldehydes, which can be antibacterial by damaging bacterial membrane structure, inhibiting bacterial enzyme activity, inducing oxidative stress response, promoting iron ion chelation, and inhibiting bacterial binary signaling pathway. In recent years, studies have found that plant-derived natural products can inhibit common oral pathogenic bacteria such as Streptococcus mutans, Porphyromonas-gingivalis, and Enterococcus faecalis. This article reviewed the antibacterial mechanism of plant-derived natural products and their related applications in the treatment of oral infectious diseases.

图1 植物源性天然产物抗菌机制示意图 Gtfs:葡聚糖转移酶;Ftfs:果聚糖转移酶;ROS:活性氧分子;Fe2+:二价铁离子;Fe3+:三价铁离子;ComD:ComCDE双组分信号转导系统的跨膜激酶;ComC、ComD、ComE:ComCDE双组分信号转导系统基因;CSP:ComCD双组分系统编码的肽信号分子;VicR、VicK、VicX:VicRK信号转导系统基因;F1F0-ATP酶:质子ATP合酶。
表1 植物源性天然产物的类型及其抗菌作用
天然产物分类及化合物 化学结构 抗菌种类 最低抑菌浓度 参考文献
多酚 类黄酮 黄酮醇 槲皮素 变形链球菌 2 mg/mL [18,20]
        牙龈卟啉单胞菌 4 mg/mL  
        粪肠球菌 512 mg/mL  
      杨梅素 变形链球菌 512 μg/mL [22,25]
        粪肠球菌 250 μg/mL  
    黄酮 黄芩素 变形链球菌 - [27]
        白色念珠菌    
      芹菜素 白色念珠菌 5 μg/mL [29]
    黄烷酮 松属素 变形链球菌 (1.4 ± 0.4)μg/mL [30,31]
        粪肠球菌    
    黄烷醇 EGCG 变形链球菌 31.25 μg/mL [5,13,33]
        粪肠球菌 5 μg/mL  
        牙龈卟啉单胞菌 -  
    异黄酮 光甘草定 变形链球菌 6.25 ~ 25 μg/mL [34,35,36]
        粪肠球菌 25 μg/mL  
  非类黄酮 单宁类 没食子单宁 变形链球菌 - [37]
        牙龈卟啉单胞菌 -  
      缩合单宁 粪肠球菌 - [39,41]
    姜黄素   变形链球菌 - [10,42,43,44,45]
        牙龈卟啉单胞菌 62.5 ~ 125 μg/mL  
        粪肠球菌 -  
    厚朴酚   变形链球菌 10 μg/mL [46]
    白藜芦醇 变形链球菌 800 μg/mL [49,50]
      牙龈卟啉单胞菌 -  
    咖啡酸苯乙酯 变形链球菌 0.08 μg/mL [52]
      白色念珠菌 -  
萜类 单萜类 香芹酚 变形链球菌 93.4 μg/mL [53]
    百里酚 变形链球菌 - [54]
      白色念珠菌 39 μg/mL  
    萜品烯四醇 变形链球菌 - [55]
      白色念珠菌 2.34 mg/mL  
  倍半萜 反式法尼醇 变形链球菌 6.25 mmol/L [3,57]
      白色念珠菌 150 mmol/L  
  二萜 松萝酸 变形链球菌 5 μg/mL [58]
  三萜 熊果酸 变形链球菌 256 ~ 1 024 μg/mL [59]
    人参皂苷Rh2 变形链球菌 - [61]
      远缘链球菌    
      血链球菌    
  四萜 辣椒素 变形链球菌 50 μg/mL [63,64]
      粪肠球菌 256 μg/mL  
      牙龈卟啉单胞菌 16 μg/mL  
生物碱类   血根碱 变形链球菌 4 ~ 8 μg/mL [65]
    小檗碱 变形链球菌 300 μg/mL [67,68,69,70]
      粪肠球菌 500 μg/mL  
      白色念珠菌 31.25 μg/mL  
      牙龈卟啉单胞菌 31.3 μg/mL  
醌类   大黄酸 变形链球菌 5.69 μg/mL [72,73]
      牙龈卟啉单胞菌 15.625 μg/mL  
醛类   肉桂醛 变形链球菌 1 000 ~ 2 000 μg/mL [14,74,75]
      粪肠球菌 250 ~ 500 μg/mL  
[1]
Kassebaum N, Bernabé E, Dahiya M,et al. Global burden of untreated caries:A systematic review and metaregression [J]. J Dent Res2015,94(5):650-658. DOI:10.1177/0022034515573272.
[2]
Yi SM, Zhu JL, Fu LL,et al. Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane [J]. Int J Food Microbiol2010,144(1):111-117. DOI:10.1016/j.ijfoodmicro.2010.09.005.
[3]
Koo H, Hayacibara M, Schobel B,et al. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol [J]. J Antimicrob Chemother2003,52(5):782-789. DOI:10.1093/jac/dkg449.
[4]
Plaper A, Golob M, Hafner I,et al. Characterization of quercetin binding site on DNA gyrase [J]. Biochem Biophys Res Commun2003,306(2):530-536. DOI:10.1016/s0006-291x(03)01006-4.
[5]
Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans[J]. Antimicrob Agents Chemother2011,55(3):1229-1236. DOI:10.1128/AAC.01016-10.
[6]
Wu D, Kong Y, Han C,et al. D-Alanine:D-alanine ligase as a new target for the flavonoids quercetin and apigenin [J]. Int J Antimicrob Agents2008,32(5):421-426. DOI:10.1016/j.ijantimicag.2008.06.010.
[7]
Webb MR, Ebeler SE. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds:Structural determinates of activity [J]. Biochem J2004,384(3):527-541. DOI:10.1042/BJ20040474.
[8]
Ezraty B, Gennaris A, Barras F,et al. Oxidative stress,protein damage and repair in bacteria [J]. Nat Rev Microbiol2017,15(7):385-396. DOI:10.1038/nrmicro.2017.26.
[9]
Zheng D, Huang C, Huang H,et al. Antibacterial mechanism of curcumin:A review[J]. Chem Biodivers2020,17(8):e2000171. DOI:10.1002/cbdv.202000171.
[10]
Pourhajibagher M, Kazemian H, Chiniforush N,et al. Exploring different photosensitizers to optimize elimination of planktonic and biofilm forms of Enterococcus faecalis from infected root canal during antimicrobial photodynamic therapy[J]. Photodiagnosis Photodyn Ther2018,24:206-211. DOI:10.1016/j.pdpdt.2018.09.014.
[11]
Schaible UE, Kaufmann SH. Iron and microbial infection [J]. Nat Rev Microbiol2004,2(12):946-953. DOI:10.1038/nrmicro1046.
[12]
Mira L, Tereza Fernandez M, Santos M,et al. Interactions of flavonoids with iron and copper ions:A mechanism for their antioxidant activity [J]. Free Radic Res2002,36(11):1199-1208. DOI:10.1080/1071576021000016463.
[13]
Lee P, Tan KS. Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence [J]. Arch Oral Biol2015,60(3):393-399. DOI:10.1016/j.archoralbio.2014.11.014.
[14]
Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments [J]. Nat Rev Microbiol2019,17(6):371-382. DOI:10.1038/s41579-019-0186-5.
[15]
Chakraborty P, Dastidar DG, Paul P,et al. Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine:A potential approach for sustainable management of biofilm [J]. Arch Microbiol2020,202(3):623-635. DOI:10.1007/s00203-019-01775-0.
[16]
Viszwapriya D, Subramenium GA, Radhika S,et al. Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes [J]. Antonie Van Leeuwenhoek2017,110(1):153-165. DOI:10.1007/s10482-016-0785-3.
[17]
He Z, Huang Z, Jiang W,et al. Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms [J]. Front Microbiol2019,10:2241. DOI:10.3389/fmicb.2019.02241.
[18]
Shu Y, Liu Y, Li L,et al. Antibacterial activity of quercetin on oral infectious pathogens [J]. Afr J Microbiol Res2011,5(30):5358-5361. DOI:10.5897/AJMR11.849.
[19]
He Z, Zhang X, Song Z,et al. Quercetin inhibits virulence properties of Porphyromas gingivalis in periodontal disease [J]. Sci Rep2020,10(1):18313. DOI:10.1038/s41598-020-74977-y.
[20]
Qayyum S, Sharma D, Bisht D,et al. Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress [J]. Microb Pathog2019,126:205-211. DOI:10.1016/j.micpath.2018.11.013.
[21]
Qi W, Qi W, Xiong D,et al. Quercetin:Its antioxidant mechanism,antibacterial properties and potential application in prevention and control of toxipathy[J]. Molecules2022,27(19):6545. DOI:10.3390/molecules27196545.
[22]
Hu P, Lv B, Yang K,et al. Discovery of myricetin as an inhibitor against Streptococcus mutans and an anti-adhesion approach to biofilm formation [J]. Int J Med Microbiol2021,311(4):151512. DOI:10.1016/j.ijmm.2021.151512.
[23]
Falsetta ML, Klein MI, Lemos JA,et al. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo[J]. Antimicrob Agents Chemother2012,56(12):6201-6211. DOI:10.1128/AAC.01381-12.
[24]
Gutiérrez-Venegas G, Luna OA, Arreguín-Cano JA,et al. Myricetin blocks lipoteichoic acid-induced COX-2 expression in human gingival fibroblasts [J]. Cell Mol Biol Lett2014,19(1):126-139. DOI:10.2478/s11658-014-0186-4.
[25]
Motlhatlego KE, Abdalla MA, Leonard CM,et al. Inhibitory effect of Newtonia extracts and myricetin-3-O-rhamnoside (myricitrin) on bacterial biofilm formation[J]. BMC Complement Med Ther2020,20(1):1-10. DOI:10.1186/s12906-020-03139-4.
[26]
Franklin SJ, Myrdal PB. Solid-state and solution characterization of myricetin [J]. AAPS PharmSciTech2015,16(6):1400-1408. DOI:10.1208/s12249-015-0329-6.
[27]
Chen H, Xie S, Gao J,et al. Flavonoid baicalein suppresses oral biofilms and protects enamel hardness to combat dental caries [J]. Int J Mol Sci2022,23(18):10593. DOI:10.3390/ijms231810593.
[28]
刘连,林航,黄若诗,等. 黄芩苷、黄芩素对变形链球菌生物膜抑制作用的研究[J]. 中药新药与临床药理2017,28(4):464-467. DOI:10.19378/j.issn.1003-9783.2017.04.011.
[29]
Koo H, Schobel B, Scott-Anne K,et al. Apigenin and tt-farnesol with fluoride effects on S.mutans biofilms and dental caries [J]. J Dent Res2005,84(11):1016-1020. DOI:10.1177/154405910508401109.
[30]
Veloz JJ, Alvear M, Salazar LA. Antimicrobial and antibiofilm activity against Streptococcus mutans of individual and mixtures of the main polyphenolic compounds found in Chilean propolis [J]. Biomed Res Int2019:7602343. DOI:10.1155/2019/7602343.
[31]
Oncag O, Cogulu D, Uzel A,et al. Efficacy of propolis as an intracanal medicament against Enterococcus faecalis[J]. Gen Dent2006,54(5):319-322.
[32]
Melok AL, Lee LH, Mohamed Yussof SA,et al. Green tea polyphenol epigallocatechin-3-gallate-stearate inhibits the growth of Streptococcus mutans:A promising new approach in caries prevention [J]. Dent J (Basel)2018,6(3):38. DOI:10.3390/dj6030038.
[33]
Asahi Y, Noiri Y, Miura J,et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms [J]. J App Microbiol2014,116(5):1164-1171. DOI:10.1111/jam.12458.
[34]
Vaillancourt K, LeBel G, Pellerin G,et al. Effects of the licorice isoflavans licoricidin and glabridin on the growth,adherence properties,and acid production of Streptococcus mutans,and assessment of their biocompatibility [J]. Antibiotics (Basel)2021,10(2):163. DOI:10.3390/antibiotics10020163.
[35]
Grenier D, Marcoux E, Azelmat J,et al. Biocompatible combinations of nisin and licorice polyphenols exert synergistic bactericidal effects against Enterococcus faecalis and inhibit NF-κB activation in monocytes [J]. AMB Express2020,10(1):120. DOI:10.1186/s13568-020-01056-w.
[36]
Marcoux E, Lagha AB, Gauthier P,et al. Antimicrobial activities of natural plant compounds against endodontic pathogens and biocompatibility with human gingival fibroblasts [J]. Arch Oral Biol2020,116:104734. DOI:10.1016/j.archoralbio.2020.104734.
[37]
Yuen MK, Wong RW, Hägg U,et al. Antimicrobial activity of traditional Chinese medicines on common oral bacteria [J]. Chinese Medicine2011,2(2):37. DOI:10.4236/cm.2011.22007.
[38]
Zhang L, Xue J, Li J,et al. Effects of Galla chinensis on inhibition of demineralization of regular bovine enamel or enamel disposed of organic matrix [J]. Arch Oral Biol2009,54(9):817-822. DOI:10.1016/j.archoralbio.2009.06.007.
[39]
Yang S, Liu Y, Mao J,et al. The antibiofilm and collagen-stabilizing effects of proanthocyanidin as an auxiliary endodontic irrigant [J]. Int Endod J2020,53(6):824-833. DOI:10.1111/iej.13280.
[40]
Epasinghe DJ, Yiu CKY, Burrow MF,et al. The inhibitory effect of proanthocyanidin on soluble and collagen-bound proteases [J]. J Dent2013,41(9):832-839. DOI:10.1016/j.jdent.2013.06.002.
[41]
Trentin DS, Silva DB, Frasson AP,et al. Natural green coating inhibits adhesion of clinically important bacteria [J]. Sci Rep2015,5(1):8287. DOI:10.1038/srep08287.
[42]
Li B, Pan T, Lin H,et al. The enhancing antibiofilm activity of curcumin on Streptococcus mutans strains from severe early childhood caries [J]. BMC Microbiol2020,20(1):286. DOI:10.1186/s12866-020-01975-5.
[43]
Li X, Yin L, Ramage G,et al. Assessing the impact of curcumin on dual-species biofilms formed by Streptococcus mutans and Candida albicans[J]. Microbiologyopen2019,8(12):e937. DOI:10.1002/mbo3.937.
[44]
张碧楚,黄平,胡萍,等. 姜黄素对变形链球菌UA159生长、粘附的体外实验研究[J]. 临床口腔医学杂志2013,29(8):469-471. DOI:10.3969/j.issn.1003-1634.2013.08.008.
[45]
Kumbar VM, Peram MR, Kugaji MS,et al. Effect of curcumin on growth,biofilm formation and virulence factor gene expression of Porphyromonas gingivalis[J]. Odontology2021,109(1):18-28. DOI:10.1007/s10266-020-00514-y.
[46]
Sakaue Y, Domon H, Oda M,et al. Anti-biofilm and bactericidal effects of magnolia bark-derived magnolol and honokiol on Streptococcus mutans[J]. Microbiol Immunol2016,60(1):10-16. DOI:10.1111/1348-0421.12343.
[47]
许颖,李婷,潘亮亮,等. 厚朴酚对变形链球菌生物膜致龋毒力因子作用的研究[J]. 中国微生态学杂志2013,25(3):299-302. DOI:10.13381/j.cnki.cjm.2013.03.016.
[48]
Lu SH, Hsu WL, Chen TH,et al. Activation of Nrf2/HO-1 signaling pathway involves the anti-inflammatory activity of magnolol in Porphyromonas gingivalis lipopolysaccharide-stimulated mouse RAW 264.7 macrophages[J]. Int Immunopharmacol2015,29(2):770-778. DOI:10.1016/j.intimp.2015.08.042.
[49]
Wu J, Fan Y, Wang X,et al. Effects of the natural compound,oxyresveratrol,on the growth of Streptococcus mutans,and on biofilm formation,acid production,and virulence gene expression [J]. Eur J Oral Sci2020,128(1):18-26. DOI:10.1111/eos.12667.
[50]
Corrêa M, Pires P, Ribeiro F,et al. Systemic treatment with resveratrol and/or curcumin reduces the progression of experimental periodontitis in rats [J]. J Periodontal Res2017,52(2):201-209. DOI:10.1111/jre.12382.
[51]
Niu Y, Wang K, Zheng S,et al. Antibacterial effect of caffeic acid phenethyl ester on cariogenic bacteria and Streptococcus mutans biofilms [J]. Antimicrobial Agents Chemother2020,64(9):e00251-20. DOI:10.1128/AAC.00251-20.
[52]
Yiğit U, Kırzıoğlu FY, Uğuz AC,et al. Is caffeic acid phenethyl ester more protective than doxycycline in experimental periodontitis?[J]. Arch Oral Biol2017,81:61-68. DOI:10.1016/j.archoralbio.2017.04.017.
[53]
Fernández-Babiano I, Navarro-Pérez ML, Pérez-Giraldo C,et al. Antibacterial and antibiofilm activity of carvacrol against oral pathogenic bacteria [J]. Metabolites2022,12(12):1255. DOI:10.3390/metabo12121255.
[54]
Rahim ZHA, Shaikh S, Ismail WNHW,et al. The effect of selected plant extracts on the development of single-species dental biofilms [J]. J Coll Physicians Surg Pak2014,24(11):796-801.
[55]
Bordini EAF, Tonon CC, Francisconi RS,et al. Antimicrobial effects of terpinen-4-ol against oral pathogens and its capacity for the modulation of gene expression [J]. Biofouling2018,34(7):815-825. DOI:10.1080/08927014.2018.1504926.
[56]
Mogen AB, Chen F, Ahn SJ,et al. Pluronics-formulated farnesol promotes efficient killing and demonstrates novel interactions with Streptococcus mutans biofilms [J]. PloS One2015,10(7):e0133886. DOI:10.1371/journal.pone.0133886.
[57]
Fernandes RA, Monteiro DR, Arias LS,et al. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol:A quantitative evaluation [J]. Biofouling2016,32(3):329-338. DOI:10.1080/08927014.2016.1144053.
[58]
Priya A, Kumar CBM, Valliammai A,et al. Usnic acid deteriorates acidogenicity,acidurance and glucose metabolism of Streptococcus mutans through downregulation of two-component signal transduction systems[J]. Sci Rep2021,11(1):1-15. DOI:10.1038/s41598-020-80338-6.
[59]
Zhou L, Ding Y, Chen W,et al. The in vitro study of ursolic acid and oleanolic acid inhibiting cariogenic microorganisms as well as biofilm [J]. Oral Dis2013,19(5):494-500. DOI:10.1111/odi.12031.
[60]
Park SN, Lim YK, Choi MH,et al. Antimicrobial mechanism of oleanolic and ursolic acids on Streptococcus mutans UA159[J]. Curr Microbiol2018,75(1):11-19. DOI:10.1007/s00284-017-1344-5.
[61]
Cao X, Ye Q, Fan M,et al. Antimicrobial effects of the ginsenoside Rh2 on monospecies and multispecies cariogenic biofilms [J]. J Appl Microbiol2019,126(3):740-751. DOI:10.1111/jam.14178.
[62]
曹茜茜,叶倩琳,周立波,等. 人参皂苷Rh2抑制致龋菌生物膜的实验研究[J]. 口腔医学研究2018,34(12):1302-1306. DOI:10.13701/j.cnki.kqyxyj.2018.12.010.
[63]
Gu H, Yang Z, Yu W,et al. Antibacterial activity of capsaicin against sectional cariogenic bacteria [J]. Pak J Zool2019,51(2):681-687. DOI:10.17582/journal.pjz/2019.51.2.681.687.
[64]
Zhou Y, Guan X, Zhu W,et al. Capsaicin inhibits Porphyromonas gingivalis growth,biofilm formation,gingivomucosal inflammatory cytokine secretion,and in vitro osteoclastogenesis [J]. Eur J Clin Microbiol Infect Dis2014,33(2):211-219. DOI:10.1007/s10096-013-1947-0.
[65]
Hannah JJ, Johnson JD, Kuftinec MM. Long-term clinical evaluation of toothpaste and oral rinse containing sanguinaria extract in controlling plaque,gingival inflammation,and sulcular bleeding during orthodontic treatment [J]. Am J Orthod Dentofacial Orthop1989,96(3):199-207. DOI:10.1016/0889-5406(89)90456-3.
[66]
Mascarenhas AK, Allen CM, Loudon J. The association between Viadent® use and oral leukoplakia [J]. Epidemiology2001,12(6):741-743. DOI:10.1097/00001648-200111000-00024.
[67]
Dziedzic A, Wojtyczka RD, Kubina R. Inhibition of oral Streptococci growth induced by the complementary action of berberine chloride and antibacterial compounds [J]. Molecules2015,20(8):13705-13724. DOI:10.3390/molecules200813705.
[68]
Wei GX, Xu X, Wu CD. In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures [J]. Arch Oral Biol2011,56(6):565-572. DOI:10.1016/j.archoralbio.2010.11.021.
[69]
Chen L, Bu Q, Xu H,et al. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro[J]. Microbiol Res2016,186-187:44-51. DOI:10.1016/j.micres.2016.03.003.
[70]
Zhang R, Yang J, Wu J,et al. Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regeneration [J]. Eur J Pharmacol2019,851:144-150. DOI:10.1016/j.ejphar.2019.02.026.
[71]
Yan Y, Li X, Zhang C,et al. Research progress on antibacterial activities and mechanisms of natural alkaloids:A review[J]. Antibiotics(Basel)2021,10(3):318. DOI:10.3390/antibiotics10030318.
[72]
Folliero V, Dell′Annunziata F, Roscetto E,et al. Rhein:A novel antibacterial compound against Streptococcus mutans infection [J]. Microbiol Res2022,261:127062. DOI:10.1016/j.micres.2022.127062.
[73]
Kommerein N, Vierengel N, Groß J,et al. Antiplanktonic and antibiofilm activity of Rheum palmatum against Streptococcus oralis and Porphyromonas gingivalis[J]. Microorganisms2022,10(5):965. DOI:10.3390/microorganisms10050965.
[74]
Balasubramanian A, Vasudevan S, Shanmugam K,et al. Combinatorial effects of trans-cinnamaldehyde with fluoride and chlorhexidine on Streptococcus mutans[J]. J Appl Microbiol2021,130(2):382-393. DOI:10.1111/jam.14794.
[75]
Hu M, Kalimuthu S, Zhang C,et al. Trans-cinnamaldehyde-biosurfactant complex as a potent agent against Enterococcus faecalis biofilms [J]. Pharmaceutics2022,14(11):2355. DOI:10.3390/pharmaceutics14112355.
[1] 陈曾燕, 何陈云, 费国华, 钱云, 陆泓. 高危型人乳头瘤病毒持续感染的转阴治疗方法探讨[J]. 中华妇幼临床医学杂志(电子版), 2013, 09(06): 798-800.
阅读次数
全文


摘要