切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 140 -147. doi: 10.3877/cma.j.issn.1674-1366.2023.02.013

综述

细菌群体感应信号对宿主免疫调节机制的研究进展
邓欣怡1, 曾振宇1, 李晓岚1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2022-11-25 出版日期:2023-04-01
  • 通信作者: 李晓岚

Research progress on bacterial quorum sensing signal on host immune regulation mechanism

Xinyi Deng1, Zhenyu Zeng1, Xiaolan Li1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2022-11-25 Published:2023-04-01
  • Corresponding author: Xiaolan Li
  • Supported by:
    2022 National College Students′ innovation training program(202210762); 2023 College Students′ innovation training program(202310778)
引用本文:

邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.

Xinyi Deng, Zhenyu Zeng, Xiaolan Li. Research progress on bacterial quorum sensing signal on host immune regulation mechanism[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2023, 17(02): 140-147.

群体感应(QS)是细菌通过感知特定群体感应信号分子(QSSM)的浓度阈值,以调节菌群基因表达,改变细菌及菌群行为的系统。这种调节机制在细菌与宿主的相互作用中也发挥重要作用。细菌释放QSSM被宿主感知,启动相关信号通路,激活或抑制基因表达。目前研究显示,宿主细胞的细胞膜、细胞质、细胞器和细胞核等参与QSSM刺激的多种信号通路,介导宿主的相关免疫应答。本文将对QSSM的分类、作用宿主的途径以及作用结果的研究进展进行综述。

Quorum sensing (QS) is a system that bacteria can regulate the gene expression and change the behavior of microbiome by sensing the concentration threshold of specific quorum sensing signal molecules (QSSMs). This regulatory mechanism also plays an important role in the interaction between bacteria and host. The release of QSSMs by bacteria is sensed by the host, which initiates relevant signaling pathways to activate or inhibit gene expression. Current researches have shown that various structures of the host cells, including the cell membrane, cytoplasm, organelles and nucleus are involved in multiple signaling pathways irritated by QSSMs, and mediate relevant host immune responses. In this article, the classification of QSSMs, the research progress of the pathway and effects on hosts were reviewed.

表1 细菌群体感应信号分子(QSSM)的分类
图1 细菌群体感应信号分子(QSSM)对宿主免疫的调节方式和作用结果 A:G-菌(a.铜绿假单胞菌)合成的AHL通过自由扩散出入细胞,可作用于宿主细胞(b.上皮细胞、成纤维细胞、单核-巨噬细胞、中性粒细胞、免疫细胞等)的细胞膜(结合于膜上受体PRR或T2R,或直接插入细胞膜脂质中)、细胞质、细胞器(包括线粒体和内质网)及细胞核内的相应靶点,经由不同信号通路启动细胞凋亡程序、激活免疫应答或其他作用;B:G+菌(a.致龋性变形链球菌、肺炎链球菌)合成AIP,通过ABC转运系统分泌出胞外,作用于宿主细胞(b.肥大细胞、牙龈上皮细胞等)膜上的G蛋白偶联受体MRGPRX2或T2R,促进宿主细胞脱颗粒、分泌促炎因子等;C:G+菌/G-菌(a.哈氏弧菌),分泌AI-2,作用于宿主细胞(b.肠上皮细胞、牙龈角质形成细胞等)的靶点未知,破坏上皮细胞间连接、分泌细胞因子、促进或抑制肿瘤生长和介导抑郁样作用等;D:细菌(a.肠出血性大肠埃希菌)产生的AI-3可能与肾上腺素/去甲肾上腺素有类似的靶点,即细胞(b.单核细胞)膜上某种G蛋白偶联受体,促进IL-8分泌等。
[1]
Li QRen YFu X. Inter-kingdom signaling between gut microbiota and their host[J]. Cell Mol Life Sci201976(12):2383-2389. DOI:10.1007/s00018-019-03076-7.
[2]
Mark Welch JLRamírez-Puebla STBorisy GG. Oral microbiome geography:Micron-scale habitat and niche[J]. Cell Host Microbe202028(2):160-168. DOI:10.1016/j.chom.2020.07.009.
[3]
Xiao YZou HLi J,et al. Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells:Current understanding and future perspectives[J]. Gut Microbes202214(1):2039048. DOI:10.1080/19490976.2022.2039048.
[4]
Başkan CSırıken BTüfekci EF,et al. Presence of quorum sensing system,virulence genes,biofilm formation and relationship among them and class 1 integron in carbapenem-resistant clinical Pseudomonas aeruginosa isolates[J]. Arch Microbiol2022204(8):464. DOI:10.1007/s00203-022-03061-y.
[5]
Song SWood TK. The primary physiological roles of autoinducer 2 in escherichia coli are chemotaxis and biofilm formation[J]. Microorganisms20219(2):386. DOI:10.3390/microorganisms9020386
[6]
Vasquez JKTal-Gan YCornilescu G,et al. Simplified AIP-Ⅱ peptidomimetics are potent inhibitors of Staphylococcus aureus AgrC quorum sensing receptors[J]. Chembiochem201718(4):413-423. DOI:10.1002/cbic.201600516.
[7]
Ma RQiu SJiang Q,et al. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus[J]. Int J Med Microbiol2017307(4/5):257-267. DOI:10.1016/j.ijmm.2017.03.003.
[8]
Torres-Cerna CEMorales JAHernandez-Vargas EA. Modeling quorum sensing dynamics and interference on Escherichia coli[J]. Front Microbiol201910:1835. DOI:10.3389/fmicb.2019.01835.
[9]
Parker CTRussell RNjoroge JW,et al. Genetic and mechanistic analyses of the periplasmic domain of the enterohemorrhagic Escherichia coli QseC histidine sensor kinase[J]. J Bacteriol2017199(8):e00861-16. DOI:10.1128/JB.00861-16.
[10]
Kravchenko VVKaufmann GFMathison JC,et al. N-(3-oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular pattern recognition receptor pathways[J]. J Biol Chem2006281(39):28822-28830. DOI:10.1074/jbc.M606613200.
[11]
Kravchenko VVKaufmann GFMathison JC,et al. Modulation of gene expression via disruption of NF-kappaB signaling by a bacterial small molecule[J]. Science2008321(5886):259-263. DOI:10.1126/science.1156499.
[12]
Khambati IHan SPijnenburg D,et al. The bacterial quorum-sensing molecule,N-3-oxo-dodecanoyl-L-homoserine lactone,inhibits mediator release and chemotaxis of murine mast cells[J]. Inflamm Res201766(3):259-268. DOI:10.1007/s00011-016-1013-3.
[13]
Jaggupilli ASingh Nde Jesus VC,et al. Characterization of the binding sites for bacterial acyl homoserine lactones(AHLs)on human bitter taste receptors(T2Rs)[J]. ACS Infect Dis20184(7):1146-1156. DOI:10.1021/acsinfecdis.8b00094.
[14]
Mcmahon DBKuek LEJohnson ME,et al. The bitter end:T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells[J]. Cell Calcium2022101:102499. DOI:10.1016/j.ceca.2021.102499.
[15]
Song DMeng JCheng J,et al. Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution[J]. Nat Microbiol20194(1):97-111. DOI:10.1038/s41564-018-0290-8.
[16]
Moura-Alves PPuyskens AStinn A,et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection[J]. Science2019366(6472):aaw1629. DOI:10.1126/science.aaw1629.
[17]
Neavin DRLiu DRay B,et al. The role of the aryl hydrocarbon receptor(AHR)in immune and inflammatory diseases[J]. Int J Mol Sci201819(12):3851. DOI:10.3390/ijms19123851.
[18]
Tiaden AHilbi H. α-hydroxyketone synthesis and sensing by legionella and vibrio[J]. Sensors(Basel)201212(3):2899-2919. DOI:10.3390/s120302899.
[19]
Simon SSchell UHeuer N,et al. Inter-kingdom signaling by the legionella quorum sensing molecule LAI-1 modulates cell migration through an IQGAP1-Cdc42-ARHGEF9-dependent pathway[J]. PLoS Pathog201511(12):e1005307. DOI:10.1371/journal.ppat.1005307.
[20]
Shiner EKTerentyev DBryan A,et al. Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling[J]. Cell Microbiol20068(10):1601-1610. DOI:10.1111/j.1462-5822.2006.00734.x.
[21]
Schwarzer CRavishankar BPatanwala M,et al. Thapsigargin blocks Pseudomonas aeruginosa homoserine lactone-induced apoptosis in airway epithelia[J]. Am J Physiol Cell Physiol2014306(9):C844-C855. DOI:10.1152/ajpcell.00002.2014.
[22]
Jacobi CASchiffner FHenkel M,et al. Effects of bacterial N-acyl homoserine lactones on human Jurkat T lymphocytes-OdDHL induces apoptosis via the mitochondrial pathway[J]. Int J Med Microbiol2009299(7):509-519. DOI:10.1016/j.ijmm.2009.03.005.
[23]
Singh PKYadav VKKalia M,et al. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxo-dodecanoyl)-L-homoserine lactone triggers mitochondrial dysfunction and apoptosis in neutrophils through calcium signaling[J]. Med Microbiol Immunol2019208(6):855-868. DOI:10.1007/s00430-019-00631-8.
[24]
Josephson HNtzouni MSkoglund C,et al. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine lactone impacts mitochondrial networks morphology,energetics,and proteome in host cells[J]. Front Microbiol202011:1069. DOI:10.3389/fmicb.2020.01069.
[25]
Jahoor APatel RBryan A,et al. Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer[J]. J Bacteriol2008190(13):4408-4415. DOI:10.1128/JB.01444-07.
[26]
Williams SCPatterson EKCarty NL,et al. Pseudomonas aeruginosa autoinducer enters and functions in mammalian cells[J]. J Bacteriol2004186(8):2281-2287. DOI:10.1128/JB.186.8.2281-2287.2004.
[27]
Smith RSFedyk ERSpringer TA,et al. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2[J]. J Immunol2001167(1):366-374. DOI:10.4049/jimmunol.167.1.366.
[28]
Toobian DGhosh PKatkar GD. Parsing the role of PPARs in macrophage processes[J]. Front Immunol202112:783780. DOI:10.3389/fimmu.2021.783780.
[29]
Griffin PERoddam LFBelessis YC,et al. Expression of PPARγ and paraoxonase 2 correlated with Pseudomonas aeruginosa infection in cystic fibrosis[J]. PLoS One20127(7):e42241. DOI:10.1371/journal.pone.0042241.
[30]
Cooley MAWhittall CRolph MS. Pseudomonas signal molecule 3-oxo-C12-homoserine lactone interferes with binding of rosiglitazone to human PPARgamma[J]. Microbes Infect201012(3):231-237. DOI:10.1016/j.micinf.2009.12.009.
[31]
Pundir PLiu RVasavda C,et al. A connective tissue mast-cell-specific receptor detects bacterial quorum-sensing molecules and mediates antibacterial immunity[J]. Cell Host Microbe201926(1):114-122.e1-e8. DOI:10.1016/j.chom.2019.06.003.
[32]
Medapati MRSingh NBhagirath AY,et al. Bitter taste receptor T2R14 detects quorum sensing molecules from cariogenic Streptococcus mutans and mediates innate immune responses in gingival epithelial cells[J]. FASEB J202135(3):e21375. DOI:10.1096/fj.202000208R.
[33]
Ji YCSun QFu CY,et al. Exogenous autoinducer-2 rescues intestinal dysbiosis and intestinal inflammation in a neonatal mouse necrotizing enterocolitis model[J]. Front Cell Infect Microbiol202111:694395. DOI:10.3389/fcimb.2021.694395.
[34]
Medina-Rodriguez EMMadorma DO′connor G,et al. Identification of a signaling mechanism by which the microbiome regulates Th17 cell-mediated depressive-like behaviors in mice[J]. Am J Psychiatry2020177(10):974-990. DOI:10.1176/appi.ajp.2020.19090960.
[35]
Elmanfi SMa XSintim HO,et al. Quorum-sensing molecule dihydroxy-2,3-pentanedione and its analogs as regulators of epithelial integrity[J]. J Periodontal Res201853(3):414-421. DOI:10.1111/jre.12528.
[36]
Fteita DKönönen EGürsoy M,et al. Quorum sensing molecules regulate epithelial cytokine response and biofilm-related virulence of three Prevotella species[J]. Anaerobe201854:128-135. DOI:10.1016/j.anaerobe.2018.09.001.
[37]
Sperandio VTorres AGJarvis B,et al. Bacteria-host communication:The language of hormones[J]. Proc Natl Acad Sci U S A2003100(15):8951-8956. DOI:10.1073/pnas.1537100100.
[38]
Lustri BCSperandio VMoreira CG. Bacterial Chat:Intestinal metabolites and signals in host-microbiota-pathogen interactions[J]. Infect Immun201785(12):e00476-17. DOI:10.1128/IAI.00476-17.
[39]
Barrasso KWatve SSimpson CA,et al. Dual-function quorum-sensing systems in bacterial pathogens and symbionts[J]. PLoS Pathog202016(10):e1008934. DOI:10.1371/journal.ppat.1008934.
[40]
Bao LYu JZhong H,et al. Expression of toll-like receptors in T lymphocytes stimulated with N-(3-oxododecanoyl)-L-homoserine lactone from Pseudomonas aeruginosa[J]. Apmis2017125(6):553-557. DOI:10.1111/apm.12690.
[41]
Vikström EMagnusson KEPivoriunas A. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone stimulates phagocytic activity in human macrophages through the p38 MAPK pathway[J]. Microbes Infect20057(15):1512-1518. DOI:10.1016/j.micinf.2005.05.012.
[42]
Wagner CZimmermann SBrenner-Weiss G,et al. The quorum-sensing molecule N-3-oxododecanoyl homoserine lactone(3OC12-HSL)enhances the host defence by activating human polymorphonuclear neutrophils(PMN)[J]. Anal Bioanal Chem2007387(2):481-487. DOI:10.1007/s00216-006-0698-5.
[43]
Shin JAhn SHKim SH,et al. N-3-oxododecanoyl homoserine lactone exacerbates endothelial cell death by inducing receptor-interacting protein kinase 1-dependent apoptosis[J]. Am J Physiol Cell Physiol2021321(4):C644-C653. DOI:10.1152/ajpcell.00094.2021.
[44]
Tao SXiong YHan D,et al. N-(3-oxododecanoyl)-l-homoserine lactone disrupts intestinal epithelial barrier through triggering apoptosis and collapsing extracellular matrix and tight junction[J]. J Cell Physiol2021236(8):5771-5784. DOI:10.1002/jcp.30261.
[45]
Zimmermann SWagner CMüller W,et al. Induction of neutrophil chemotaxis by the quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone[J]. Infect Immun200674(10):5687-5692. DOI:10.1128/IAI.01940-05.
[46]
Guo JYoshida KIkegame M,et al. Quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone:An all-rounder in mammalian cell modification[J]. J Oral Biosci202062(1):16-29. DOI:10.1016/j.job.2020.01.001.
[47]
Zargar AQuan DNCarter KK,et al. Bacterial secretions of nonpathogenic Escherichia coli elicit inflammatory pathways:A closer investigation of interkingdom signaling[J]. mBio20156(2):e00025. DOI:10.1128/mBio.00025-15.
[48]
Sears CL. The who,where and how of fusobacteria and colon cancer[J]. Elife20187:e28434. DOI:10.7554/eLife.28434.
[49]
Wu JLi KPeng W,et al. Autoinducer-2 of Fusobacterium nucleatum promotes macrophage M1 polarization via TNFSF9/IL-1β signaling[J]. Int Immunopharmacol201974:105724. DOI:10.1016/j.intimp.2019.105724.
[50]
den Breems NYEftimie R. The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes[J]. J Theor Biol2016390:23-39. DOI:10.1016/j.jtbi.2015.10.034.
[51]
Li QPeng WWu J,et al. Autoinducer-2 of gut microbiota,a potential novel marker for human colorectal cancer,is associated with the activation of TNFSF9 signaling in macrophages[J]. Oncoimmunology20198(10):e1626192. DOI:10.1080/2162402X.2019.1626192.
[52]
Wu JWang YJiang Z. Immune induction identified by TMT proteomics analysis in Fusobacterium nucleatum autoinducer-2 treated macrophages[J]. Expert Rev Proteomics202017(2):175-185. DOI:10.1080/14789450.2020.1738223.
[53]
Tateda KIshii YHorikawa M,et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils[J]. Infect Immun200371(10):5785-5793. DOI:10.1128/IAI.71.10.5785-5793.2003.
[54]
Guo JWang ZWeng Y,et al. N-(3-oxododecanoyl)-homoserine lactone regulates osteoblast apoptosis and differentiation by mediating intracellular calcium[J]. Cell Signal202075:109740. DOI:10.1016/j.cellsig.2020.109740.
[55]
Kumar SRBryan JNEaton AM,et al. Differential modulation of transcription factors and cytoskeletal proteins in prostate carcinoma cells by a bacterial lactone[J]. Biomed Res Int2018:6430504. DOI:10.1155/2018/6430504.
[56]
Nandakumar NDandela RGopas J,et al. Quorum sensing modulators exhibit cytotoxicity in Hodgkin′s lymphoma cells and interfere with NF-κB signaling[J]. Bioorg Med Chem Lett201727(13):2967-2973. DOI:10.1016/j.bmcl.2017.05.012.
[57]
Balhouse BNPatterson LSchmelz EM,et al. N-(3-oxododecanoyl)-L-homoserine lactone interactions in the breast tumor microenvironment:Implications for breast cancer viability and proliferation in vitro[J]. PLoS One201712(7):e0180372. DOI:10.1371/journal.pone.0180372.
[58]
Chai HHazawa MShirai N,et al. Functional properties of synthetic N-acyl-L-homoserine lactone analogs of quorum-sensing gram-negative bacteria on the growth of human oral squamous carcinoma cells[J]. Invest New Drugs201230(1):157-163. DOI:10.1007/s10637-010-9544-x.
[59]
Scheper MAShirtliff MEMeiller TF,et al. Farnesol,a fungal quorum-sensing molecule triggers apoptosis in human oral squamous carcinoma cells[J]. Neoplasia200810(9):954-963. DOI:10.1593/neo.08444.
[1] 孙国先, 徐媛, 刘微丽, 郑庆斌, 侯红玲. 辛普森菌群多样性指数与降钙素原对机械通气细菌性肺炎患者的预测价值研究[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 28-32.
[2] 魏权, 张燊, 陈慧佳, 邹姮, 胡丽娜. 女性生殖道微生物群与辅助生殖技术相关性研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 151-155.
[3] 张利, 张阳, 马菁菁, 喻哲昊, 葛亮, 孙林春. 细胞壁锚定蛋白SasX调控RNAⅢ参与金黄色葡萄球菌ST239克隆生物膜形成及致病性相关研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 252-259.
[4] 王锃涛, 王宪波, 曹钰, 郝禹, 韩俊燕, 曾辉. 基于多色流式降维聚类方法的自发性细菌性腹膜炎患者T淋巴细胞亚群分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 92-101.
[5] 郭长江, 冷建刚, 邵伟. 阿莫西林克拉维酸钾联合布地奈德治疗小儿反复细菌性呼吸道感染[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 394-396.
[6] 朱伟权, 叶善平, 唐和春, 刘东宁, 鞠后琼, 仲崇晗, 黄智翔, 李太原. 机器人辅助直肠癌NOSES术后细菌学及肿瘤学结果的前瞻性研究[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 282-287.
[7] 韦远, 徐西占, 梁庆丰. 免疫性眼表疾病眼表菌群的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 55-59.
[8] 朱敏, 李法强. CD64指数联合降钙素原、白介素-6、血清淀粉样蛋白A检测对重型颅脑损伤术后颅内细菌感染的诊断价值[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 26-31.
[9] 王健, 赵海剑, 孙静, 张晓雨, 陈柏羽. LncRNA SNHG4表达与结直肠癌预后的关系[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 139-144.
[10] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
[11] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[12] 刘平娟, 罗科城, 吴家茵, 廖康, 胡雯雯, 陈怡丽. 神经内科重症监护室患者肠道耐碳青霉烯类肠杆菌目细菌主动筛查研究[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 235-240.
[13] 王晓苏, 戴铮, 朱嘉嘉, 李启超, 张李涛. BacT/ALERT两种血培养系统8种血培养瓶对模拟菌血症标本检测能力的对比研究[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 207-213.
[14] 刁福强, 罗欣, 古春明, 唐玲玲. 广州某医院儿童社区获得性肺炎病原菌分布及耐药性分析[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 38-44.
[15] 杨锐富, 周燕斌. 主要协同转运蛋白超家族膜转运蛋白与细菌生物膜形成的相关性研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 77-81.
阅读次数
全文


摘要