切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 325 -332. doi: 10.3877/cma.j.issn.1674-1366.2021.06.001

所属专题: 口腔医学

专家论坛

铁死亡与肿瘤放射治疗的研究进展
李泓钰1, 刘燕婷1, 余东升1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔重点实验室,广州 510055
  • 收稿日期:2021-02-08 出版日期:2021-12-01
  • 通信作者: 余东升

Research progress of ferroptosis and its research prospects in tumor radiotherapy

Hongyu Li1, Yanting Liu1, Dongsheng Yu1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2021-02-08 Published:2021-12-01
  • Corresponding author: Dongsheng Yu
  • Supported by:
    National Natural Science Foundation of China(82073378); Natural Science Foundation of Guangdong Province(2021A1515012399)
引用本文:

李泓钰, 刘燕婷, 余东升. 铁死亡与肿瘤放射治疗的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2021, 15(06): 325-332.

Hongyu Li, Yanting Liu, Dongsheng Yu. Research progress of ferroptosis and its research prospects in tumor radiotherapy[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(06): 325-332.

铁死亡是一种依赖铁过载及细胞内活性氧诱导脂质过氧化代谢失调引起的新型细胞死亡形式。铁死亡过程中伴有活性氧成分不仅能够直接杀伤肿瘤细胞,还可以改善肿瘤微环境,克服乏氧肿瘤细胞引起的放疗抵抗,增强放射敏感性。因此,调节放疗过程中细胞调节性铁死亡,为肿瘤放射治疗和辐射防护提供了一种潜在的新策略。本文通过系统的文献回顾,介绍铁死亡的发生机制,分析铁死亡在放疗增敏、放疗抵抗和放疗辐射损伤中的最新研究进展,进一步展望铁死亡在放疗增敏、辐射损伤防护及放射免疫联合治疗中的应用和研究前景,有助于研究者更好地了解铁死亡在肿瘤放射治疗中的关键作用。

Radioresistance and radiation damage are the difficult problem that need to be solved urgently in cancer radiotherapy. Ferroptosis is a novel type of cell death induced by iron overload and lipid peroxidation metabolic imbalance caused by the enhancement of intracellular reactive oxygen species (ROS) . ROS induced by ferroptosis can not only lead to cellular damage directly, but also improve the hypoxic microenvironment of tumors and sensitize radiotherapy. Ferroptosis plays an important role in inhibiting tumor proliferation and enhancing radiosensitivity, providing a potential new strategy for improving efficacy of radiotherapy. Here, we reviewed the research progress of ferroptosis and made a prospect of its application in radiotherapy.

[1]
Baidoo KE, Yong K, Brechbiel MW. Molecular pathways:Targeted alpha-particle radiation therapy[J]. Clin Cancer Res201319(3):530-537. DOI:10.1158/1078-0432.CCR-12-0298.
[2]
Lang X, Green MD, Wang W,et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11[J]. Cancer Discov20199(12):1673-1685. DOI:10.1158/2159-8290.Cd-19-0338.
[3]
Lei G, Zhang Y, Koppula P,et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J]. Cell Res202030(2):146-162. DOI:10.1038/s41422-019-0263-3.
[4]
Dixon SJ, Lemberg KM, Lamprecht MR,et al. Ferroptosis:An iron-dependent form of nonapoptotic cell death[J]. Cell2012149(5):1060-1072. DOI:10.1016/j.cell.2012.03.042.
[5]
Tang D, Chen X, Kang R,et al. Ferroptosis:Molecular mechanisms and health implications[J]. Cell Res202131(2):107-125. DOI:10.1038/s41422-020-00441-1.
[6]
Stockwell BR, Friedmann Angeli JP, Bayir H,et al. Ferroptosis:A regulated cell death nexus linking metabolism,redox biology,and disease[J]. Cell2017171(2):273-285. DOI:10.1016/j.cell.2017.09.021.
[7]
Masaldan S, Clatworthy SAS, Gamell C,et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol201814:100-115. DOI:10.1016/j.redox.2017.08.015.
[8]
Picard V, Govoni G, Jabado N,et al. Nramp 2(DCT1/DMT1)expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool[J]. J Biol Chem2000275(46):35738-35745. DOI:10.1074/jbc.M005387200.
[9]
Sterling J, Guttha S, Song Y,et al. Iron importers Zip8 and Zip14 are expressed in retina and regulated by retinal iron levels [J]. Exp Eye Res2017155:15-23. DOI:10.1016/j.exer.2016.12.008.
[10]
Doll S, Proneth B, Tyurina YY,et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol201713(1):91-98. DOI:10.1038/nchembio.2239.
[11]
Yang WS, SriRamaratnam R, Welsch ME,et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell2014156(1/2):317-331. DOI:10.1016/j.cell.2013.12.010.
[12]
Jiang X, Stockwell BR, Conrad M. Ferroptosis:Mechanisms,biology and role in disease[J]. Nat Rev Mol Cell Biol202122(4):266-282. DOI:10.1038/s41580-020-00324-8.
[13]
Chen X, Kang R, Kroemer G,et al. Broadening horizons:The role of ferroptosis in cancer[J]. Nat Rev Clin Oncol202118(5):280-296. DOI:10.1038/s41571-020-00462-0.
[14]
Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury[J]. Cancer Lett2012327(1/2):48-60. DOI:10.1016/j.canlet.2011.12.012.
[15]
Ye LF, Chaudhary KR, Zandkarimi F,et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers[J]. ACS Chem Biol202015(2):469-484. DOI:10.1021/acschembio.9b00939.
[16]
Thermozier S, Hou W, Zhang X,et al. Anti-ferroptosis drug enhances total-body irradiation mitigation by drugs that block apoptosis and necroptosis[J]. Radiat Res2020193(5):435-450. DOI:10.1667/rr15486.1.
[17]
Ivanov SD, Semenov AL, Mikhelson VM,et al. Effects of iron ion additional introduction in radiation therapy of tumor-bearing animals[J]. Radiats Biol Radioecol201353(3):296-303. DOI:10.7868/s0869803113030065.
[18]
Ivanov SD, Semenov AL, Kovan′ko EG,et al. Effects of iron ions and iron chelation on the efficiency of experimental radiotherapy of animals with gliomas[J]. Bull Exp Biol Med2015158(6):800-803. DOI:10.1007/s10517-015-2865-1.
[19]
Xu Y, Wang Q, Li X,et al. Itraconazole attenuates the stemness of nasopharyngeal carcinoma cells via triggering ferroptosis[J]. Environ Toxicol202036(2):257-266. DOI:10.1002/tox.23031.
[20]
Tomita K, Fukumoto M, Itoh K,et al. MiR-7-5p is a key factor that controls radioresistance via intracellular Fe2+ content in clinically relevant radioresistant cells[J]. Biochem Biophys Res Commun2019518(4):712-718. DOI:10.1016/j.bbrc.2019.08.117.
[21]
Chen G, Li Y, He Y,et al. Upregulation of circular RNA circATRNL1 to sensitize oral squamous cell carcinoma to irradiation[J]. Mol Ther Nucleic Acids202019:961-973. DOI:10.1016/j.omtn.2019.12.031.
[22]
Cobler L, Zhang H, Suri P,et al. xCT inhibition sensitizes tumors to γ-radiation via glutathione reduction[J]. Oncotarget20189(64):32280-32297. DOI:10.18632/oncotarget.25794.
[23]
Zhao Y, Li Y, Zhang R,et al. The role of erastin in ferroptosis and its prospects in cancer therapy[J]. Onco Targets Ther202013:5429-5441. DOI:10.2147/OTT.S254995.
[24]
Shibata Y, Yasui H, Higashikawa K,et al. Erastin,a ferroptosis-inducing agent,sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo[J]. PLoS One201914(12):e0225931. DOI:10.1371/journal.pone.0225931.
[25]
Pan X, Lin Z, Jiang D,et al. Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis [J]. Oncol Lett201917(3):3001-3008. DOI:10.3892/ol.2019.9888.
[26]
Hammer CT, Wills ED. The effect of ionizing radiation on the fatty acid composition of natural fats and on lipid peroxide formation[J]. Int J Radiat Biol Relat Stud Phys Chem Med197935(4):323-332. DOI:10.1080/09553007914550391.
[27]
Koike N, Kota R, Naito Y,et al. 2-Nitroimidazoles induce mitochondrial stress and ferroptosis in glioma stem cells residing in a hypoxic niche[J]. Commun Biol20203(1):450. DOI:10.1038/s42003-020-01165-z.
[28]
Zhang X, Tian M, Li X,et al. Hematopoietic protection and mechanisms of ferrostatin-1 on hematopoietic acute radiation syndrome of mice[J]. Int J Radiat Biol202197(4):464-473. DOI:10.1080/09553002.2021.1876956.
[29]
Zhang X, Xing X, Liu H,et al. Ionizing radiation induces ferroptosis in granulocyte-macrophage hematopoietic progenitor cells of murine bone marrow[J]. Int J Radiat Biol202096(5):584-595. DOI:10.1080/09553002.2020.1708993.
[30]
Xie LW, Cai S, Zhao TS,et al. Green tea derivative(-)-epigallocatechin-3-gallate(EGCG)confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo[J]. Free Radic Biol Med2020161:175-186. DOI:10.1016/j.freeradbiomed.2020.10.012.
[31]
Li X, Zhuang X, Qiao T. Role of ferroptosis in the process of acute radiation-induced lung injury in mice[J]. Biochem Biophys Res Commun2019519(2):240-245. DOI:10.1016/j.bbrc.2019.08.165.
[32]
Li X, Duan L, Yuan S,et al. Ferroptosis inhibitor alleviates radiation-induced lung fibrosis(RILF)via down-regulation of TGF-β1[J]. J Inflamm(Lond)201916:11. DOI:10.1186/s12950-019-0216-0.
[33]
任陈,李旋子,杜莎莎.维生素E通过抑制铁坏死减少放射性神经损伤[J].南方医科大学报202040(8):1097-1102. DOI:10.12122/j.issn.1673-4254.2020.08.05.
[34]
Wang W, Green M, Choi JE,et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature2019569(7755):270-274. DOI:10.1038/s41586-019-1170-y.
[35]
Wan C, Sun Y, Tian Y,et al. Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming[J]. Sci Adv20206(13):eaay9789. DOI:10.1126/sciadv.aay9789.
[36]
Li H, Zhang X, Yi C,et al. Ferroptosis-related gene signature predicts the prognosis in oral squamous cell carcinoma patients[J]. BMC Cancer202121(1):835. DOI:10.1186/s12885-021-08478-0.
[37]
Sato H, Shiiya A, Kimata M,et al. Redox imbalance in cystine/glutamate transporter-deficient mice[J]. J Biol Chem2005280(45):37423-37429. DOI:10.1074/jbc.M506439200.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要