切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2019, Vol. 13 ›› Issue (04) : 212 -217. doi: 10.3877/cma.j.issn.1674-1366.2019.04.004

所属专题: 文献

基础研究

树脂水门汀与氧化锆陶瓷剪切粘接强度的研究
李轲1, 郑适泽2, 陈玥1, 鄢晓媛1, 战德松3, 付佳乐3,()   
  1. 1. 中国医科大学口腔医学院,沈阳 110002
    2. 吉林大学口腔医学院,长春 130021
    3. 中国医科大学口腔医学院口腔材料学教研室,中国医科大学附属口腔医院修复二科,沈阳 110002
  • 收稿日期:2019-04-08 出版日期:2019-08-01
  • 通信作者: 付佳乐

The shear bond strength between resin luting systems and zirconia

Ke Li1, Shize Zheng2, Yue Chen1, Xiaoyuan Yan1, Desong Zhan3, Jiale Fu3,()   

  1. 1. School of Stomatology, China Medical University, Shenyang 110002, China
    2. School of Stomatology, Jilin University, Changchun 130021, China
    3. Department of Dental Materials, School of Stomatology, China Medical University, The 2nd Department of Prosthodontics, Hospital of Stomatology, China Medical University, Shenyang 110002, China
  • Received:2019-04-08 Published:2019-08-01
  • Corresponding author: Jiale Fu
  • About author:
    Corresponding author: Fu Jiale, Email:
  • Supported by:
    Innovation and Entrepreneurship Training Program for College Students of Liaoning Province(201710159000167, 201810159099); New Teachers Fund of China Medical University(XZR20160015)
引用本文:

李轲, 郑适泽, 陈玥, 鄢晓媛, 战德松, 付佳乐. 树脂水门汀与氧化锆陶瓷剪切粘接强度的研究[J]. 中华口腔医学研究杂志(电子版), 2019, 13(04): 212-217.

Ke Li, Shize Zheng, Yue Chen, Xiaoyuan Yan, Desong Zhan, Jiale Fu. The shear bond strength between resin luting systems and zirconia[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2019, 13(04): 212-217.

目的

评估不同实验条件下树脂水门汀与氧化锆瓷之间的剪切粘接强度(SBS)。

方法

使用计算机辅助设计与制作(CAD/CAM)设备切割并烧结制作6个边长为2 cm的正方体氧化锆试件。按不同实验条件将8种双固化树脂水门汀分为13组(n = 20):(1)Monobond N + Multilink N(MMN组);(2)Ivoclean + Monobond N + Multilink N(IMM组);(3)Ivoclean + Monobond N + Multilink N[无喷砂,IMM(ns)组];(4)Tetric N-Bond Universal + Multilink Speed(TUM组);(5)Multilink Speed(MLS组);(6)Z-Prime Plus + TheraCem(ZPT组);(7)Z-Prime Plus + Duo-Link(ZPD组);(8)Single Bond Universal + RelyX U200(SRU组);(9)RelyX U200(RXU组);(10)Single Bond Universal + RelyX Ultimate Clicker(SRU组);(11)OptiBond Versa + Kerr NX3(OVK组);(12)Clearfil Universal Bond + Clearfil SAC(CUS组);(13)Clearfil SAC(SAC组)。将每组树脂水门汀自混合注入透明模具并将其无压力置于氧化锆面后进行光照固化。所有试件在37 ℃水中存储24 h后进行SBS测试。采用SPSS 19.0软件One-Way ANOVA(P<0.05)对SBS进行统计学分析。利用电子体视显微镜观察氧化锆端断裂界面。

结果

本实验中13组树脂水门汀的SBS(单位:MPa)降序排列依次为:OVK(27.51 ± 3.65)>IMM(27.28 ± 3.79)>SRC(26.77 ± 3.62)>CUS(25.36 ± 3.10)>TUM(25.22 ± 4.88)>ZPD(23.96 ± 6.25)>MLS(23.13 ± 2.74)>MMN(23.07 ± 3.71)>SAC(22.20 ± 3.59)>IMM(ns)(21.99 ± 3.50)>SRU(19.19 ± 2.27)>ZPT(18.62 ± 2.08)>RXU(15.04 ± 4.02)。

结论

(1)不同树脂水门汀的SBS具有材料依赖性;(2)在氧化锆表面进行喷砂处理、使用专用清洗剂或将通用型粘接剂作为底漆使用有利于提高树脂水门汀的SBS。

Objective

To evaluate the shear bond strength (SBS) between resin cement and zirconia under different experimental conditions.

Methods

In present study, six cubic zirconia specimens with a side length of 2 cm were cut by computer aided design/computer aided manufacturing (CAD/CAM) equipment and sintered afterwards. According to different experimental conditions, eight kinds of dual-curing resin cements were divided into 13 groups, such as: (1) Monobond N + Multilink N (MMN) ; (2) Ivoclean + Monobond N + Multilink (IMM) ; (3) Ivoclean + Monobond N + Multilink N [no sandblasting, IMM (ns) ]; (4) Tetric N-Bond Universal + Multilink Speed (TUM) ; (5) Multilink Speed (MLS) ; (6) Z-Prime Plus + TheraCem (ZPT) ; (7) Z-Prime Plus + Duo-Link (ZPD) ; (8) Single Bond Universal + RelyX U200 (SRU) ; (9) RelyX U200 (RXU) ; (10) Single Bond Universal + RelyX Ultimate Clicker (SRU) ; (11) OptiBond Versa + Kerr NX3 (OVK) ; (12) Clearfil Universal Bond + Clearfil SAC (CUS) ; (13) Clearfil SAC (SAC) . Each resin cement was injected into a transparent mould after self-mixing, and put onto the zirconia surface without pressure when finally being light-cured (n = 20) . The SBS test of the all specimens was performed after 24 hours of 37 ℃ water storage, and the results were statistically analyzed by One-Way ANOVA, SPSS 19.0 software (P<0.05) . The fracture mode on zirconia surface was observed by electron stereoscopic microscope.

Results

The bond strength (MPa) of resin cements in a descending order was: OVK (27.51 ± 3.65) >IMM (27.28 ± 3.79) >SRC (26.77 ± 3.62) > CUS (25.36 ± 3.10) >TUM (25.22 ± 4.88) >ZPD (23.96 ± 6.25) >MLS (23.13 ± 2.74) > MMN (23.07 ± 3.71) >SAC (22.20 ± 3.59) >IMM (ns) (21.99 ± 3.50) >SRU (19.19 ± 2.27) >ZPT (18.62 ± 2.08) >U200 (15.04 ± 4.02) .

Conclusions

(1) The SBS of resin cements was material-dependent. (2) The SBS of resin cement could be improved by sandblasting, using a special cleaning agent or universal adhesive as a primer on zirconia surface.

表1 树脂水门汀分组与氧化锆试件表面处理方法
图1 水门汀样品制备流程与测试方法示意图 A:将树脂水门汀注入模具;B:放置并光照;C:水浴后取下模具;D:进行微剪切测试;E:将锆块测试界面向外放入夹具,用3枚螺丝将其固定,多功能测试仪带动细钢丝向上匀速移动至试件脱落,记录此时所示剪切力
图2 本研究13组树脂水门汀试件剪切粘接强度(SBS)测试结果 横线表示差异无统计学意义(P>0.05)
图3 剪切测试后13组树脂水门汀试件试件断裂模式分析
图4 体视显微镜下各组树脂水门汀试件的断裂界面形态(× 100)
[1]
Li RW, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology:state of the art[J]. J Prosthodont Res,2014,58(4):208-216. DOI:10.1016/j.jpor.2014.07.003.
[2]
黄婉怡,战德松.口内扫描数字化印模系统分类及其应用[J].中国实用口腔科杂志,2017,10(8):452-457. DOI:10.19538/j.kq.2017.08.002.
[3]
秦敏杰,郑翔宇,李睿.不同表面处理方式和不同粘结剂对氧化锆全瓷冠粘结强度的影响[J].中国组织工程研究,2017,21(34):5455-5459. DOI:10.3969/j.issn.2095-4344.2017.34.008.
[4]
Ozkurt Z, Kazazoğlu E. Clinical success of zirconia in dental application[J]. J Prosthodont,2010,19(1):64-68. DOI:10.1111/j.1532-849X.2009.00513.x.
[5]
Silva LHD, Lima E, Miranda RBP,et al. Dental ceramics:a review of new materials and processing methods[J]. Braz Oral Res,2017,31(suppl 1):e58. DOI:10.1590/1807-3107BOR-2017.vol31.0058.
[6]
Thompson JY, Stoner BR, Piascik JR,et al. Adhesion/cementation to zirconia and other non-silicate ceramics:where are we now?[J]. Dent Mater,2011,27(1):71-82. DOI:10.1016/j.dental.2010.10.022.
[7]
Negreiros WM, Ambrosano GMB, Giannini M. Effect of cleaning agent,primer application and their combination on the bond strength of a resin cement to two yttrium-tetragonal zirconia polycrystal zirconia ceramics[J]. Eur J Dent,2017,11(1):6-11. DOI:10.4103/ejd.ejd_276_16.
[8]
Kern M. Bonding to oxide ceramics--laboratory testing versus clinical outcome[J]. Dent Mater,2015,31(1):8-14. DOI:10.1016/j.dental.2014.06.007.
[9]
Inokoshi M, De Munck J, Minakuchi S,et al. Meta-analysis of bonding effectiveness to zirconia ceramics[J]. J Dent Res,2014,93(4):329-334. DOI:10.1177/0022034514524228.
[10]
林双,黄艳苓,王晓晴,等.树脂水门汀的临床应用进展[J/CD].中华口腔医学研究杂志(电子版),2018,12(6):379-382. DOI:10.3877/cma.j.issn.1674-1366.2018.06.010.
[11]
Kirsten M, Matta RE, Belli R,et al. Hygroscopic expansion of self-adhesive resin cements and the integrity of all-ceramic crowns[J]. Dent Mater,2018,34(8):1102-1111. DOI:10.1016/j.dental.2018.04.008.
[12]
Grasel R, Santos MJ, Rêgo HC,et al. Effect of Resin Luting Systems and Alumina Particle Air Abrasion on Bond Strength to Zirconia[J]. Oper Dent,2018,43(3):282-290. DOI:10.2341/15-352-L.
[13]
Fu J, Saikaew P, Kawano S,et al. Effect of air-blowing duration on the bond strength of current one-step adhesives to dentin[J]. Dent Mater,2017,33(8):895-903. DOI:10.1016/j.dental.2017.03.015.
[14]
杜桥,牛光良.氧化锆的表面粗化和改性[J].国际口腔医学杂志,2015,42(1):97-101. DOI:10.7518/gjkq.2015.01.024.
[15]
Xie H, Tay FR, Zhang F,et al. Coupling of 10-methacryloyloxydecyl dihydrogen phosphate to tetragonal zirconia:Effect of pH reaction conditions on coordinate bonding[J]. Dent Mater,2015,31(10):e218-e225. DOI:10.1016/j.dental.2015.06.014.
[16]
李睿,孙迎春,周晖,等.口腔氧化锆陶瓷的粘接方法[J].中国组织工程研究,2015,19(3):478-482. DOI:10.3969/j.issn.2095-4344.2015.03.027.
[17]
Merve CT, Canan A, Duygu K. Resin cementation of zirconia ceramics with different bonding agents[J]. Biotechnol Biotechnol Equip,2015,29(2):363-367. DOI:10.1080/13102818.2014.996606.
[18]
de Oyagüe RC, Monticelli F, Toledano M,et al. Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic[J]. Dent Mater,2009,25(2):172-179. DOI:10.1016/j.dental.2008.05.012.
[19]
Pitta J, Branco TC, Portugal J. Effect of saliva contamination and artificial aging on different primer/cement systems bonded to zirconia[J]. J Prosthet Dent,2018,119(5):833-839. DOI:10.1016/j.prosdent.2017.07.006.
[20]
Salz U, Zimmermann J, Zeuner F,et al. Hydrolytic stability of serf-etching adhesive systems[J]. J Adhes Dent,2005,7(2):107-116. DOI:10.3290/j.jad.a10282.
[21]
Chen Y, Lu Z, Qian M,et al. Chemical affinity of 10-methacryloyloxydecyl dihydrogen phosphate to dental zirconia:Effects of molecular structure and solvents[J]. Dent Mater,2017,33(12):e415-e427. DOI:10.1016/j.dental.2017.09.013.
[22]
Yang L, Chen B, Xie H,et al. Durability of Resin Bonding to Zirconia Using Products Containing 10-Methacryloyloxydecyl Dihydrogen Phosphate[J]. J Adhes Dent,2018,20(4):279-287. DOI:10.3290/j.jad.a40989.
[23]
Elsayed A, Younes F, Lehmann F,et al. Tensile Bond Strength of So-called Universal Primers and Universal Multimode Adhesives to Zirconia and Lithium Disilicate Ceramics[J]. J Adhes Dent,2017,19(3):221-228. DOI:10.3290/j.jad.a38436.
[24]
傅昭然,田福聪,张路,等.通用型粘接剂对双固化树脂水门汀牙本质粘接强度的影响[J].北京大学学报(医学版),2017,49(1):101-104. DOI:10.3969/j.issn.1671-167X.2017.01.018.
[25]
Chen L, Yang J, Wang JR,et al. Physical and biological properties of a newly developed calcium silicate-based self-adhesive cement[J]. Am J Dent,2018,31(2):86-90.
[26]
Monticelli F, Osorio R, Mazzitelli C,et al. Limited decalcifcation/diffusion of self-adhesive cements into dentin[J]. J Dent Res,2008,87(10):974-979. DOI:10.1177/154405910808701012.
[27]
Takahashi A, Takagaki T, Wada T,et al. The effect of different cleaning agents on saliva contamination for bonding performance of zirconia ceramics[J]. Dent Mater J,2018,37(5):734-739. DOI:10.4012/dmj.2017-376.
[28]
Tonial D, Ghiggi PC, Lise AA,et al. Effect of conditioner on microtensile bond strength of self-adhesive resin cements to dentin[J]. Stomatologija,2010,12(3):73-79.
[29]
Behr M, Proff P, Kolbeck C,et al. The bond strength of the resin-to-zirconia interface using different bonding concepts[J]. J Mech Behav Biomed Mater,2011,4(1):2-8. DOI:10.1016/j.jmbbm.2010.08.002.
[1] 王万锋, 徐正一, 李家硕, 曾祥隽, 龚兆威, 战德松, 付佳乐. 不同酸蚀模式对新型窝沟封闭剂在牙釉质表面粘接耐久性的影响[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 284-291.
[2] 古丽莎, 吴倩. 化学交联在牙本质粘接修复中的应用及展望[J]. 中华口腔医学研究杂志(电子版), 2019, 13(03): 129-135.
[3] 林双, 黄艳苓, 王晓晴, 刘永灏, 张磊, 战德松, 付佳乐. 树脂水门汀的临床应用进展[J]. 中华口腔医学研究杂志(电子版), 2018, 12(06): 379-382.
[4] 黄沁, 杨博, 杨家俊, 霍兆麟, 王焱. 固化模式对双固化树脂水门汀微观机械性能及聚合程度的影响[J]. 中华口腔医学研究杂志(电子版), 2018, 12(04): 199-204.
[5] 黄梓濡, 邹华, 侯沐明, 许欢, 吉建新, 陈艺. 粉液比例对树脂加强型玻璃离子托槽粘接的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(04): 301-304.
[6] 陈庸, 郑希彦, 黄耀, 梁力建, 张宗明, 魏杨辉. 纤维蛋白粘合剂在腹腔镜肝囊肿开窗引流术中的应用[J]. 中华普通外科学文献(电子版), 2019, 13(03): 184-188.
[7] 崔伟, 李涛, 陈纲, 李世拥. 猪源纤维蛋白粘合剂封闭结直肠切除术后系膜裂孔的初步研究报告[J]. 中华普外科手术学杂志(电子版), 2022, 16(01): 59-62.
阅读次数
全文


摘要