切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 190 -194. doi: 10.3877/cma.j.issn.1674-1366.2018.03.010

所属专题: 口腔医学 文献

综述

Hsp100/Clp ATPase对变异链球菌毒力表达的调控及机制的研究进展
雷芳草1, 阳燕2, 张剑英1,()   
  1. 1. 410008 长沙,中南大学湘雅口腔医院牙体牙髓病科
    2. 410008 长沙,中南大学湘雅口腔医院修复科;410008 长沙,中南大学粉末冶金研究院
  • 收稿日期:2018-02-01 出版日期:2018-06-01
  • 通信作者: 张剑英
  • 基金资助:
    国家自然科学基金(青年科学基金项目,81700967); 湖南省卫生计生委科研计划项目(B20180046); 中南大学研究生自主探索创新项目(502211704)

Research progress on the regulation and mechanism of Hsp100/Clp ATPase on virulence expressions in Streptococcus mutans

Fangcao Lei1, Yan Yang2, Jianying Zhang1,()   

  1. 1. Department of Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
    2. Department of Prosthodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; Institute of Powder Metallurgy, Central South University, Changsha 410008, China
  • Received:2018-02-01 Published:2018-06-01
  • Corresponding author: Jianying Zhang
  • About author:
    Corresponding author:Zhang Jianying,Email:
引用本文:

雷芳草, 阳燕, 张剑英. Hsp100/Clp ATPase对变异链球菌毒力表达的调控及机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2018, 12(03): 190-194.

Fangcao Lei, Yan Yang, Jianying Zhang. Research progress on the regulation and mechanism of Hsp100/Clp ATPase on virulence expressions in Streptococcus mutans[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(03): 190-194.

变异链球菌是龋病的始动因子,依赖其产酸、耐酸及形成生物膜等能力成为了口腔致龋环境中的优势菌。三磷酸腺苷(ATP)依赖的内肽酶Clp(Clp ATPase)属于热休克蛋白100家族(Hsp100)成员,通过调控基因表达和控制关键蛋白的活性影响细菌的多种生物学性能。Hsp100/Clp ATPase中某些成员可结合ATP依赖的丝氨酸蛋白水解酶ClpP形成功能复合体,活化、重组和降解变性蛋白质,维持细菌的蛋白质稳态,辅助细菌抵抗严苛的口腔环境。特异性靶向变异链球菌Hsp100/Clp ATPase有望为龋病防治提供新的思路和方法。本文就Hsp100/Clp ATPase的结构和分类,对变异链球菌基因、蛋白及生物学行为调控,及Hsp100/Clp ATPase靶向药物作用等研究进展进行系统阐述,为进一步分析Hsp100/Clp ATPase与变异链球菌致龋毒力的关系,研发抗龋药物候选靶标奠定基础。

Streptococcus mutans (S.mutans) is the initiating factor of dental caries. Depending on its acid production, acid resistance and biofilm formation ability, S.mutans has been regarded as the predominant bacteria in the oral cariogenic environment. Adenosine triphosphate (ATP) dependent endopeptidase Clp (Clp ATPase) belongs to the heat shock protein 100 (heat shock protein, Hsp100) family. It can affect many biological properties of bacteria via regulating gene expression and controlling key proteins activities. Some of Hsp100/Clp ATPase members can bind to the ATP-dependent serine protease ClpP to form functional complexes that have the ability to activate, remodel, and degrade denatured proteins, thus maintaining protein homeostasis and resistance to hostile oral environment. Specifically targeting Hsp100/Clp ATPase of S.mutans is expected to provide new ideas and methods for the prevention and treatment of dental caries. In terms of the structure and classification of Hsp100/Clp ATPase, this review summarizes systematically Hsp100/Clp ATPase related genes, proteins and biological behavior regulations in S.mutans, as well as the roles of drugs that specifically targeted Hsp100/Clp ATPase. A comprehensive foundation of the relationship between Hsp100/Clp ATPase and S.mutans cariogenicity can provide a promising candidate target of anti-caries drugs.

[1]
Krzyściak W,Jurczak A,Kościelniak D,et al. The virulence of Streptococcus mutans and the ability to form biofilms[J]. Eur J Clin Microbiol Infect Dis,2014,33(4):499-515.
[2]
Lemos JA,Quivey RG Jr,Koo H,et al. Streptococcus mutans:a new Gram-positive paradigm?[J]. Microbiology,2013,159(Pt 3):436-445.
[3]
Lemos JA,Abranches J,Burne RA. Responses of cariogenic streptococci to environmental stresses[J]. Curr Issues Mol Biol,2005,7(1):95-107.
[4]
Frees D,Savijoki K,Varmanen P,et al. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC,Gram-positive bacteria[J]. Mol Microbiol,2007,63(5):1285-1295.
[5]
Gottesman S,Squires C,Pichersky E,et al. Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes[J]. Proc Natl Acad Sci U S A,1990,87(9):3513-3517.
[6]
Lemos JA,Burne RA. Regulation and Physiological Significance of ClpC and ClpP in Streptococcus mutans[J]. J Bacteriol,2002,184(22):6357-6366.
[7]
Kirstein J,Molière N,Dougan DA,et al. Adapting the machine:adaptor proteins for Hsp100/Clp and AAA+ proteases[J]. Nat Rev Microbiol,2009,7(8):589-599.
[8]
Olivares AO,Baker TA,Sauer RT. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines[J]. Nat Rev Microbiol,2016,14(1):33-44.
[9]
Rosenzweig R,Farber P,Velyvis A,et al. ClpB N-terminal domain plays a regulatory role in protein disaggregation[J]. Proc Natl Acad Sci U S A,2015,112(50):E6872-E6881.
[10]
Trentini DB,Suskiewicz MJ,Heuck A,et al. Arginine phosphorylation marks proteins for degradation by a Clp protease [J]. Nature,2016,539(7627):48-53.
[11]
Kajfasz JK,Abranches J,Lemos JA. Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans[J]. Microbiology,2011,157(10):2880-2890.
[12]
Zhang J,Banerjee A,Biswas I. Transcription of clpP is enhanced by a unique tandem repeat sequence in Streptococcus mutans [J]. J Bacteriol,2009,191(3):1056-1065.
[13]
Len AC,Harty DW,Jacques NA. Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance[J]. Microbiology,2004,150(5):1339-1351.
[14]
Tao L,Chattoraj P,Biswas I. CtsR regulation in mcsAB-deficient Gram-positive bacteria[J]. J Bacteriol,2012,194(6):1361-1368.
[15]
Tao L,Biswas I. ClpL is required for folding of CtsR in Streptococcus mutans[J]. J Bacteriol,2013,195(3):576-584.
[16]
Niu G,Okinaga T,Qi F,et al. The Streptococcus mutans IrvR repressor is a CI-like regulator that functions through autocleav-age and Clp-dependent proteolysis[J]. J Bacteriol,2010,192(6):1586-1595.
[17]
Levchenko I,Seidel M,Sauer RT,et al. A specificity-enhancing factor for the ClpXP degradation machine[J]. Science,2000,289(5488):2354-2356
[18]
Tao L,Biswas I. Degradation of SsrA-tagged proteins in streptococci[J]. Microbiology,2015,161(Pt 4):884-894.
[19]
Huang YH,Guan HH,Chen CJ,et al. Staphylococcus aureus single-stranded DNA-binding protein SsbA can bind but cannot stimulate PriA helicase[J]. PLoS ONE,2017,12(7):e0182060.
[20]
Jana B,Tao L,Biswas I. Strain-Dependent Recognition of a Unique Degradation Motif by ClpXP in Streptococcus mutans [J]. mSphere,2016,1(6):e00287-16.
[21]
Kajfasz JK,Rivera-Ramos I,Abranches J,et al. Two Spx proteins modulate stress tolerance,survival,and virulence in Streptococcus mutans[J]. J Bacteriol,2010,192(10):2546-2556.
[22]
Pamp SJ,Frees D,Engelmann S,et al. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococ-cus aureus[J]. J Bacteriol,2006,188(13):4861-4870.
[23]
Kajfasz JK,Martinez AR,Rivera-Ramos I,et al. Role of Clp proteins in expression of virulence properties of Streptococcus mutans[J]. J Bacteriol,2009,191(7):2060-2068.
[24]
Elsholz AKW,Hempel K,Michalik S,et al. Activity Control of the ClpC Adaptor McsB in Bacillus subtilis[J]. J Bacteriol,2011,193(15):3887-3893.
[25]
Dong G,Tian XL,Gomez ZA,et al. Regulated proteolysis of the alternative sigma factor SigX in Streptococcus mutans:implica-tion in the escape from competence[J]. BMC Microbiol,2014(14):183.
[26]
Hou XH,Zhang JQ,Song XY,et al. Contribution of ClpP to stress tolerance and virulence properties of Streptococcus mutans [J]. J Basic Microbiol,2014,54(11):1222-1232.
[27]
Zhang JQ,Hou XH,Song XY,et al. ClpP affects biofilm formation of Streptococcus mutans differently in the presence of cariogenic carbohydrates through regulating gtfBC and ftf[J]. Curr Microbiol,2015,70(5):716-723.
[28]
王拓,于丹妮.酪蛋白裂解酶P对变异链球菌致龋性的影响[J].国际口腔医学杂志,2012,39(2):226-229.
[29]
Deng DM,Ten CJ,Crielaard W. The adaptive response of Streptococcus mutans towards oral care products:involvement of the ClpP serine protease[J]. Eur J Oral Sci,2007,115(5):363-370.
[30]
Chattoraj P,Banerjee A,Biswas S,et al. ClpP of Streptococcus mutans differentially regulates expression of genomic islands,mutacin production,and antibiotic tolerance[J]. J Bacteriol,2010,192(5):1312-1323.
[31]
Vasudevan D,Rao SP,Noble CG. Structural basis of mycobacte-rial inhibition by cyclomarin A[J]. J Biol Chem,2013,288(43):30883-30891.
[32]
McGillivray SM,Tran DN,Ramadoss NS,et al. Pharmacological inhibition of the ClpXP protease increases bacterial susceptibility to host cathelicidin antimicrobial peptides and cell envelope-active antibiotics[J]. Antimicrob Agents Chemother,2012,56(4):1854-1861.
[33]
Malik IT,Brötz-Oesterhelt H. Conformational control of the bacterial Clp protease by natural product antibiotics[J]. Nat Prod Rep,2017,34(7):815-831.
[34]
Famulla K,Sass P,Malik I,et al. Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease[J]. Mol Microbiol,2016,101(2):194-209.
[1] 王增鲜, 王婧, 杨淑怡. 目标导向液体管理策略在腹腔镜肝切除术中对患者组织灌注及应激反应的影响[J]. 中华普通外科学文献(电子版), 2023, 17(02): 134-138.
[2] 李婷婷, 吴荷玉, 张悦, 程康, 张晓芳, 程娅婵. 复合保温策略在老年腹腔镜解剖性肝切除术中的应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 522-525.
[3] 于智慧, 赵建军. 后路腰方肌阻滞复合全身麻醉在腹股沟斜疝经腹腹膜前手术中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 734-739.
[4] 尚雪梅, 杨婷婷, 刘雪. 舒适手术室护理模式在腹腔镜腹股沟疝修补术中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 647-651.
[5] 谢文龙, 周建军. 超声引导下髂腹股沟-髂腹下神经阻滞联合腹横肌平面阻滞在老年腹股沟疝中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 588-592.
[6] 于广东, 纪月珑, 李向南, 邓龙生. 纳布啡联合瑞芬太尼在腹腔镜完全腹膜外腹股沟疝手术术后应用效果分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 463-467.
[7] 李鑫, 高元丽, 经俊, 陆星, 马臻. 纳布啡复合丙泊酚在腹腔镜经腹腹膜前腹股沟疝修补术中的应用研究[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 191-195.
[8] 刘光, 刘支娜, 张玲, 王会瑟, 蔺颐, 张亚涛. 加速康复外科策略对腹股沟疝患儿应激反应及术后恢复的影响[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 574-577.
[9] 蔡露萍, 邹华, 李君, 朱海燕, 顾敏晖, 李霞, 成琼. 聚丙烯和聚乳酸复合补片对腹腔镜疝修补术患者疗效及应激状态的影响[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 570-573.
[10] 樊伟, 王榆富, 张新龙. 低剂量七氟醚与羟考酮对腹腔镜腹股沟疝修补术麻醉效果[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(04): 443-446.
[11] 李晓伟, 袁晓光, 孙蕾, 支小军, 张丹妮. 不同剂量罗哌卡因联合利多卡因对腹股沟疝无张力修补术后麻醉效果及应激反应的影响[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(04): 413-416.
[12] 何岩, 肖凤霞. 超声引导下腹横肌平面阻滞对腹腔镜腹股沟疝手术儿童苏醒躁动及应激反应的影响[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(03): 321-324.
[13] 李祥魁, 薛玉荣, 丁凯, 孔劲松. ESPB、SAPB、TPVB对胸腔镜微创术血流动力学、应激反应的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 245-247.
[14] 刘闯, 张秀丽, 丁孟瑶. 七氟醚复合依托咪酯维持麻醉对胸腔镜手术单肺通气时应激反应的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 709-711.
[15] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
阅读次数
全文


摘要