切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2017, Vol. 11 ›› Issue (06) : 354 -361. doi: 10.3877/cma.j.issn.1674-1366.2017.06.006

所属专题: 文献

基础研究

诱导小鼠颊黏膜成纤维细胞形成诱导性多潜能干细胞
尹映竹1, 梁国斌1, 刀力1, 张新春1, 覃峰1, 杨凌1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2017-09-04 出版日期:2017-12-01
  • 通信作者: 杨凌
  • 基金资助:
    国家自然科学基金(青年科学基金项目,81100775); 广东省自然科学基金(2017A030313863)

Generation of induced pluripotent stem cells from mouse buccal mucosa fibroblasts

Yingzhu Yin1, Guobin Liang1, Li Dao1, Xinchun Zhang1, Feng Qin1, Ling Yang1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2017-09-04 Published:2017-12-01
  • Corresponding author: Ling Yang
  • About author:
    Corresponding author: Yang Ling, Email:
引用本文:

尹映竹, 梁国斌, 刀力, 张新春, 覃峰, 杨凌. 诱导小鼠颊黏膜成纤维细胞形成诱导性多潜能干细胞[J/OL]. 中华口腔医学研究杂志(电子版), 2017, 11(06): 354-361.

Yingzhu Yin, Guobin Liang, Li Dao, Xinchun Zhang, Feng Qin, Ling Yang. Generation of induced pluripotent stem cells from mouse buccal mucosa fibroblasts[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2017, 11(06): 354-361.

目的

研究小鼠颊黏膜成纤维细胞(BF)重编程形成诱导性多潜能干细胞(iPSC)的诱导方法。

方法

应用携带有Oct4Sox2Klf4基因的逆转录病毒诱导小鼠BF重编程形成iPSC。观察iPSC克隆形态;进行碱性磷酸酶(ALP)染色、核型分析;实时荧光定量聚合酶链反应(PCR)及细胞免疫荧光术检测内/外源性多能基因和干细胞标志物的表达;体外、体内分化实验检测iPSC多向分化潜能。

结果

iPSC呈典型胚胎干细胞(ESC)样克隆生长,边界清晰;细胞ALP染色阳性,核型正常。内源性Dppa3NanogRex1Sox2Klf4Oct4c-Myc基因表达量与ESC接近,未检测到外源性Sox2Klf4Oct4c-Myc基因表达。干细胞标志物Oct4、Sox2和Nanog表达呈阳性。在体外,iPSC可被诱导向成骨、成脂、成软骨方向分化;体内可分化成多种组织,形成畸胎瘤。

结论

成功诱导BF重编程形成iPSC,为牙再生医学相关研究提供种子细胞来源。

Objective

To generate induced pluripotent stem cells (iPSCs) from mouse buccal mucosa fibroblasts (BFs) by genetic reprogramming.

Methods

iPSCs were established from mouse BFs via retroviral gene transfer with three reprogramming factors (Oct4, Sox2, and Klf4) . The properties of iPSCs were characterized by alkaline phosphatase staining assay, karyotype analysis, real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) , immunofluorescence and bisulfite genomic sequencing. In vitro and in vivo studies were also performed to test their differentiation and pluripotent capability.

Results

The resulting iPSCs were found to resemble mouse embryonic stem cells (ESCs) with similar clone growth and high positive stain of alkaline phosphatase. They had normal karyotype, and expressed high levels of ESCs-like genes (Dppa3, Nanog, Rex1, Sox2, Klf4, Oct4 and c-Myc) and protein markers (Oct4, Sox2, and Nanog) . Bisulfite sequencing demonstrated that the methylation of the endogenous Oct4 and Nanog promoters in iPSCs and the control ESCs clones was low or absent, while a high methylation level was found in mouse embryonic fibroblasts (MEFs) . By in vitro induction, iPSCs could produce mineralized nodules, form adipocyte-like cells with lipid droplets, and change to chondrocytes. Moreover, they can differentiate into teratomas composed of tissues of the three germ layers in vivo.

Conclusions

iPSCs were successfully established from the mouse BFs with ESCs-like properties and their pluripotency was verified. These iPSCs may serve as seed cells for tooth regeneration.

表1 实时荧光定量PCR引物序列
表2 NanogOct4启动子PCR引物序列
图1 小鼠颊黏膜成纤维细胞来源诱导性多潜能干细胞的诱导形成
图2 小鼠诱导性多潜能干细胞鉴定
图3 小鼠诱导性多潜能干细胞体外多向诱导分化
图4 诱导性多潜能干细胞体内分化形成畸胎瘤
[1]
Yildirim S, Fu SY, Kim K,et al. Tooth regeneration:a revolution in stomatology and evolution in regenerative medicine [J]. Int J Oral Sci,2011,3(3):107-116.
[2]
孙雪,奚廷斐.生物材料和再生医学的进展[J].中国修复重建外科杂志,2006,20(2):189-193.
[3]
Kazemi M, Geramipanah F, Negahdari R,et al. Active tactile sensibility of single-tooth implants versus natural dentition:a split-mouth double-blind randomized clinical trial[J]. Clin Implant Dent Relat Res,2014,16(6):947-955.
[4]
Oshima M, Tsuji T. Functional tooth regenerative therapy:tooth tissue regeneration and whole-tooth replacement[J]. Odontology,2014,102(2):123-136.
[5]
Hashmi B, Mammoto T, Weaver J,et al. Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds[J]. Stem Cell Res,2017(24):55-60.
[6]
Ohazama A, Modino SA, Miletich I,et al. Stem-cell-based tissue engineering of murine teeth[J]. J Dent Res,2004,83(7):518-522.
[7]
Yang B, Chen G, Li J,et al. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold[J]. Biomaterials,2012,33(8):2449-2461.
[8]
Bakopoulou A, Leyhausen G, Volk J,et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells(DPSCs)and stem cells from the apical papilla(SCAP)[J]. Arch Oral Biol,2011,56(7):709-721.
[9]
Rosa V, Dubey N, Islam I,et al. Pluripotency of Stem Cells from Human Exfoliated Deciduous Teeth for Tissue Engineering [J/CD]. Stem Cells Int,2016(2016):5957806.
[10]
Sakai VT, Zhang Z, Dong Z,et al. SHED differentiate into functional odontoblasts and endothelium[J]. J Dent Res,2010,89(8):791-796.
[11]
Zhang Y, Li Y, Shi R,et al. Generation of tooth-periodontium complex structures using high-odontogenic potential dental epithelium derived from mouse embryonic stem cells[J/CD]. Stem Cell Res Ther,2017,8(1):141.
[12]
Ning F, Guo Y, Tang J,et al. Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium[J]. Biochem Biophys Res Commun,2010,394(2):342-347.
[13]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.
[14]
Liu P, Zhang Y, Chen S,et al. Application of iPS cells in dental bioengineering and beyond[J]. Stem Cell Rev,2014,10(5):663-670.
[15]
Umezaki Y, Hashimoto Y, Nishishita N,et al. Human Gingival Integration-Free iPSCs;a Source for MSC-Like Cells[J/CD]. Int J Mol Sci,2015,16(6):13633-13648.
[16]
Qin D, Gan Y, Shao K,et al. Mouse meningiocytes express Sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors[J/CD]. J Biol Chem,2008,283(48):33730-33735.
[17]
Nakagawa M, Koyanagi M, Tanabe K,et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts[J]. Nat Biotechnol,2008,26(1):101-106.
[18]
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells[J]. Nature,2007,448(7151):313-317.
[19]
Hamanaka S, Yamaguchi T, Kobayashi T,et al. Generation of germline-competent rat induced pluripotent stem cells[J/CD]. PLoS One,2011,6(7):e22008.
[20]
Du D, Lou X. Generation of induced pluripotent stem cells from neonatal mouse cochlear cells[J]. Differentiation,2014,87(3-4):127-133.
[21]
Chang YC, Li WC, Twu NF,et al. Induction of dental pulp-derived induced pluripotent stem cells in the absence of c-Myc for differentiation into neuron-like cells[J]. J Chin Med Assoc,2014,77(12):618-625.
[22]
Song H, Li H, Huang M,et al. Induced pluripotent stem cells from goat fibroblasts[J]. Mol Reprod Dev,2013,80(12):1009-1017.
[23]
Yu J, Vodyanik MA, Smuga-Otto K,et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science,2007,318(5858):1917-1920.
[24]
Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells[J]. Stem Cells,2009,27(11):2667-2674.
[25]
Ban H, Nishishita N, Fusaki N,et al. Efficient generation of transgene-free human induced pluripotent stem cells(iPSCs)by temperature-sensitive Sendai virus vectors[J]. Proc Natl Acad Sci U S A,2011,108(34):14234-14239.
[26]
Cary WA, Hori CN, Pham MT,et al. Efficient Generation of Induced Pluripotent Stem and Neural Progenitor Cells From Acutely Harvested Dura Mater Obtained During Ventriculoperitoneal Shunt Surgery[J]. World Neurosurg,2015,84(5):1256-1266.
[27]
Kim JS, Choi HW, Hong YJ,et al. Generation of Partially Reprogrammed Cells and Fully Reprogrammed iPS Cells by Plasmid Transfection[J]. Methods Mol Biol,2016(1357):85-95.
[28]
Brix J, Zhou Y, Luo Y. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells[J]. J Genet Genomics,2015,42(12):661-670.
[29]
Liu R, Li M, Li Z,et al. Medaka Oct4 is essential for pluripotency in blastula formation and ES cell derivation[J]. Stem Cell Rev,2015,11(1):11-23.
[30]
Abranches E, Guedes AM, Moravec M,et al. Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency[J]. Development,2014,141(14):2770-2779.
[31]
Li M, Belmonte JC. Ground rules of the pluripotency gene regulatory network[J]. Nat Rev Genet,2017,18(3):180-191.
[32]
Kim K, Doi A, Wen B,et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature,2010,467(7313):285-290.
[33]
Ohi Y, Qin H, Hong C,et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells[J]. Nat Cell Biol,2011,13(5):541-549.
[34]
Tatullo M, Marrelli M, Shakesheff KM,et al. Dental pulp stem cells:function,isolation and applications in regenerative medicine[J/CD]. J Tissue Eng Regen Med,2015,9(11):1205-1216.
[35]
Lei M, Li K, Li B,et al. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation[J]. Biomaterials,2014,35(24):6332-6343.
[36]
Seo BM, Miura M, Gronthos S,et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet,2004,364(9429):149-155.
[37]
Sonoyama W, Liu Y, Fang D,et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine[J/CD]. PLoS One,2006(1):e79.
[38]
Lima RL, Holanda-Afonso RC, Moura-Neto V,et al. Human dental follicle cells express embryonic,mesenchymal and neural stem cells markers[J]. Arch Oral Biol,2017(73):121-128.
[39]
Miura M, Gronthos S, Zhao M,et al. SHED:stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A,2003,100(10):5807-5812.
[40]
Yu S, Diao S, Wang J,et al. Comparative analysis of proliferation and differentiation potentials of stem cells from inflamed pulp of deciduous teeth and stem cells from exfoliated deciduous teeth[J/CD]. Biomed Res Int,2014(2014):930907.
[1] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[2] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.
[5] 李昊, 韦秀湘, 钟晓霞. 聚焦高黏附力骨黏合剂,促进口腔硬组织修复[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 1-4.
[6] 徐志清, 杜宇. 机械敏感离子通道在牙源性细胞中作用的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 54-60.
[7] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[8] 程茂波, 刘钰莎, 张旭, 刘文博, 赵鹏. 对再生型疝修补补片动物试验设计的考量[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 121-124.
[9] 仲卫冬, 仲洁, 代京, 程文悦, 张剑. 基底膜生物补片用于腹腔内修补大鼠腹壁缺损手术引导组织再生的研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 139-145.
[10] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[11] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[12] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
[13] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[14] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
[15] 徐立, 阎岩. aFGF修饰自体成纤维细胞治疗食管吻合口瘘的实验研究[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 180-187.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?