切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2017, Vol. 11 ›› Issue (06) : 354 -361. doi: 10.3877/cma.j.issn.1674-1366.2017.06.006

所属专题: 文献

基础研究

诱导小鼠颊黏膜成纤维细胞形成诱导性多潜能干细胞
尹映竹1, 梁国斌1, 刀力1, 张新春1, 覃峰1, 杨凌1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2017-09-04 出版日期:2017-12-01
  • 通信作者: 杨凌
  • 基金资助:
    国家自然科学基金(青年科学基金项目,81100775); 广东省自然科学基金(2017A030313863)

Generation of induced pluripotent stem cells from mouse buccal mucosa fibroblasts

Yingzhu Yin1, Guobin Liang1, Li Dao1, Xinchun Zhang1, Feng Qin1, Ling Yang1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2017-09-04 Published:2017-12-01
  • Corresponding author: Ling Yang
  • About author:
    Corresponding author: Yang Ling, Email:
引用本文:

尹映竹, 梁国斌, 刀力, 张新春, 覃峰, 杨凌. 诱导小鼠颊黏膜成纤维细胞形成诱导性多潜能干细胞[J]. 中华口腔医学研究杂志(电子版), 2017, 11(06): 354-361.

Yingzhu Yin, Guobin Liang, Li Dao, Xinchun Zhang, Feng Qin, Ling Yang. Generation of induced pluripotent stem cells from mouse buccal mucosa fibroblasts[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2017, 11(06): 354-361.

目的

研究小鼠颊黏膜成纤维细胞(BF)重编程形成诱导性多潜能干细胞(iPSC)的诱导方法。

方法

应用携带有Oct4Sox2Klf4基因的逆转录病毒诱导小鼠BF重编程形成iPSC。观察iPSC克隆形态;进行碱性磷酸酶(ALP)染色、核型分析;实时荧光定量聚合酶链反应(PCR)及细胞免疫荧光术检测内/外源性多能基因和干细胞标志物的表达;体外、体内分化实验检测iPSC多向分化潜能。

结果

iPSC呈典型胚胎干细胞(ESC)样克隆生长,边界清晰;细胞ALP染色阳性,核型正常。内源性Dppa3NanogRex1Sox2Klf4Oct4c-Myc基因表达量与ESC接近,未检测到外源性Sox2Klf4Oct4c-Myc基因表达。干细胞标志物Oct4、Sox2和Nanog表达呈阳性。在体外,iPSC可被诱导向成骨、成脂、成软骨方向分化;体内可分化成多种组织,形成畸胎瘤。

结论

成功诱导BF重编程形成iPSC,为牙再生医学相关研究提供种子细胞来源。

Objective

To generate induced pluripotent stem cells (iPSCs) from mouse buccal mucosa fibroblasts (BFs) by genetic reprogramming.

Methods

iPSCs were established from mouse BFs via retroviral gene transfer with three reprogramming factors (Oct4, Sox2, and Klf4) . The properties of iPSCs were characterized by alkaline phosphatase staining assay, karyotype analysis, real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) , immunofluorescence and bisulfite genomic sequencing. In vitro and in vivo studies were also performed to test their differentiation and pluripotent capability.

Results

The resulting iPSCs were found to resemble mouse embryonic stem cells (ESCs) with similar clone growth and high positive stain of alkaline phosphatase. They had normal karyotype, and expressed high levels of ESCs-like genes (Dppa3, Nanog, Rex1, Sox2, Klf4, Oct4 and c-Myc) and protein markers (Oct4, Sox2, and Nanog) . Bisulfite sequencing demonstrated that the methylation of the endogenous Oct4 and Nanog promoters in iPSCs and the control ESCs clones was low or absent, while a high methylation level was found in mouse embryonic fibroblasts (MEFs) . By in vitro induction, iPSCs could produce mineralized nodules, form adipocyte-like cells with lipid droplets, and change to chondrocytes. Moreover, they can differentiate into teratomas composed of tissues of the three germ layers in vivo.

Conclusions

iPSCs were successfully established from the mouse BFs with ESCs-like properties and their pluripotency was verified. These iPSCs may serve as seed cells for tooth regeneration.

表1 实时荧光定量PCR引物序列
表2 NanogOct4启动子PCR引物序列
图1 小鼠颊黏膜成纤维细胞来源诱导性多潜能干细胞的诱导形成
图2 小鼠诱导性多潜能干细胞鉴定
图3 小鼠诱导性多潜能干细胞体外多向诱导分化
图4 诱导性多潜能干细胞体内分化形成畸胎瘤
[1]
Yildirim S, Fu SY, Kim K,et al. Tooth regeneration:a revolution in stomatology and evolution in regenerative medicine [J]. Int J Oral Sci,2011,3(3):107-116.
[2]
孙雪,奚廷斐.生物材料和再生医学的进展[J].中国修复重建外科杂志,2006,20(2):189-193.
[3]
Kazemi M, Geramipanah F, Negahdari R,et al. Active tactile sensibility of single-tooth implants versus natural dentition:a split-mouth double-blind randomized clinical trial[J]. Clin Implant Dent Relat Res,2014,16(6):947-955.
[4]
Oshima M, Tsuji T. Functional tooth regenerative therapy:tooth tissue regeneration and whole-tooth replacement[J]. Odontology,2014,102(2):123-136.
[5]
Hashmi B, Mammoto T, Weaver J,et al. Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds[J]. Stem Cell Res,2017(24):55-60.
[6]
Ohazama A, Modino SA, Miletich I,et al. Stem-cell-based tissue engineering of murine teeth[J]. J Dent Res,2004,83(7):518-522.
[7]
Yang B, Chen G, Li J,et al. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold[J]. Biomaterials,2012,33(8):2449-2461.
[8]
Bakopoulou A, Leyhausen G, Volk J,et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells(DPSCs)and stem cells from the apical papilla(SCAP)[J]. Arch Oral Biol,2011,56(7):709-721.
[9]
Rosa V, Dubey N, Islam I,et al. Pluripotency of Stem Cells from Human Exfoliated Deciduous Teeth for Tissue Engineering [J/CD]. Stem Cells Int,2016(2016):5957806.
[10]
Sakai VT, Zhang Z, Dong Z,et al. SHED differentiate into functional odontoblasts and endothelium[J]. J Dent Res,2010,89(8):791-796.
[11]
Zhang Y, Li Y, Shi R,et al. Generation of tooth-periodontium complex structures using high-odontogenic potential dental epithelium derived from mouse embryonic stem cells[J/CD]. Stem Cell Res Ther,2017,8(1):141.
[12]
Ning F, Guo Y, Tang J,et al. Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium[J]. Biochem Biophys Res Commun,2010,394(2):342-347.
[13]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.
[14]
Liu P, Zhang Y, Chen S,et al. Application of iPS cells in dental bioengineering and beyond[J]. Stem Cell Rev,2014,10(5):663-670.
[15]
Umezaki Y, Hashimoto Y, Nishishita N,et al. Human Gingival Integration-Free iPSCs;a Source for MSC-Like Cells[J/CD]. Int J Mol Sci,2015,16(6):13633-13648.
[16]
Qin D, Gan Y, Shao K,et al. Mouse meningiocytes express Sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors[J/CD]. J Biol Chem,2008,283(48):33730-33735.
[17]
Nakagawa M, Koyanagi M, Tanabe K,et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts[J]. Nat Biotechnol,2008,26(1):101-106.
[18]
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells[J]. Nature,2007,448(7151):313-317.
[19]
Hamanaka S, Yamaguchi T, Kobayashi T,et al. Generation of germline-competent rat induced pluripotent stem cells[J/CD]. PLoS One,2011,6(7):e22008.
[20]
Du D, Lou X. Generation of induced pluripotent stem cells from neonatal mouse cochlear cells[J]. Differentiation,2014,87(3-4):127-133.
[21]
Chang YC, Li WC, Twu NF,et al. Induction of dental pulp-derived induced pluripotent stem cells in the absence of c-Myc for differentiation into neuron-like cells[J]. J Chin Med Assoc,2014,77(12):618-625.
[22]
Song H, Li H, Huang M,et al. Induced pluripotent stem cells from goat fibroblasts[J]. Mol Reprod Dev,2013,80(12):1009-1017.
[23]
Yu J, Vodyanik MA, Smuga-Otto K,et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science,2007,318(5858):1917-1920.
[24]
Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells[J]. Stem Cells,2009,27(11):2667-2674.
[25]
Ban H, Nishishita N, Fusaki N,et al. Efficient generation of transgene-free human induced pluripotent stem cells(iPSCs)by temperature-sensitive Sendai virus vectors[J]. Proc Natl Acad Sci U S A,2011,108(34):14234-14239.
[26]
Cary WA, Hori CN, Pham MT,et al. Efficient Generation of Induced Pluripotent Stem and Neural Progenitor Cells From Acutely Harvested Dura Mater Obtained During Ventriculoperitoneal Shunt Surgery[J]. World Neurosurg,2015,84(5):1256-1266.
[27]
Kim JS, Choi HW, Hong YJ,et al. Generation of Partially Reprogrammed Cells and Fully Reprogrammed iPS Cells by Plasmid Transfection[J]. Methods Mol Biol,2016(1357):85-95.
[28]
Brix J, Zhou Y, Luo Y. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells[J]. J Genet Genomics,2015,42(12):661-670.
[29]
Liu R, Li M, Li Z,et al. Medaka Oct4 is essential for pluripotency in blastula formation and ES cell derivation[J]. Stem Cell Rev,2015,11(1):11-23.
[30]
Abranches E, Guedes AM, Moravec M,et al. Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency[J]. Development,2014,141(14):2770-2779.
[31]
Li M, Belmonte JC. Ground rules of the pluripotency gene regulatory network[J]. Nat Rev Genet,2017,18(3):180-191.
[32]
Kim K, Doi A, Wen B,et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature,2010,467(7313):285-290.
[33]
Ohi Y, Qin H, Hong C,et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells[J]. Nat Cell Biol,2011,13(5):541-549.
[34]
Tatullo M, Marrelli M, Shakesheff KM,et al. Dental pulp stem cells:function,isolation and applications in regenerative medicine[J/CD]. J Tissue Eng Regen Med,2015,9(11):1205-1216.
[35]
Lei M, Li K, Li B,et al. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation[J]. Biomaterials,2014,35(24):6332-6343.
[36]
Seo BM, Miura M, Gronthos S,et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet,2004,364(9429):149-155.
[37]
Sonoyama W, Liu Y, Fang D,et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine[J/CD]. PLoS One,2006(1):e79.
[38]
Lima RL, Holanda-Afonso RC, Moura-Neto V,et al. Human dental follicle cells express embryonic,mesenchymal and neural stem cells markers[J]. Arch Oral Biol,2017(73):121-128.
[39]
Miura M, Gronthos S, Zhao M,et al. SHED:stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A,2003,100(10):5807-5812.
[40]
Yu S, Diao S, Wang J,et al. Comparative analysis of proliferation and differentiation potentials of stem cells from inflamed pulp of deciduous teeth and stem cells from exfoliated deciduous teeth[J/CD]. Biomed Res Int,2014(2014):930907.
[1] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[2] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[3] 李硕, 尹希, 祁连港, 王丽, 刘宗宝. 浓缩生长因子在促进失神经皮瓣术后神经再生的应用前景[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 547-551.
[4] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[5] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[6] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[7] 魏忠玲, 陈赟, 叶美霞, 杨珺雯, 袁竺方. 不同种类敷料治疗糖尿病足疗效比较的网状荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 157-165.
[8] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[9] 王军辉, 胡颖, 刘芳, 王飞, 陈宇江, 王小竞. 浓缩生长因子用于年轻恒牙根尖周炎再生性牙髓治疗2例及文献复习[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 81-88.
[10] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[11] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[12] 李颖思, 符芳, 杨昕, 邓琼, 周航, 程肯, 李东至, 廖灿. 单细胞RNA测序技术探究CCN2基因在特纳综合征胎儿颈部淋巴水囊瘤中的关键作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 220-228.
[13] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[14] 那迪娜·帕尔哈提, 黄陈. 肿瘤相关成纤维细胞在结直肠癌发生与发展及化疗耐药中的作用研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 241-247.
[15] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
阅读次数
全文


摘要