切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2017, Vol. 11 ›› Issue (03) : 149 -156. doi: 10.3877/cma.j.issn.1674-1366.2017.03.004

所属专题: 文献

基础研究

覆盖富血小板血浆3D打印聚己内酯支架对牙髓细胞体外生物学行为的影响
李俊达1, 陈美霖1, 韦晓英1, 郝逸珊1, 王劲茗1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2017-03-15 出版日期:2017-06-01
  • 通信作者: 王劲茗
  • 基金资助:
    国家自然科学基金(青年科学基金项目,81100734)

The influence of 3D-printed polycaprolactone scaffolds coated with platelet-rich plasma on the biological functions of dental pulp cells

Junda Li1, Meilin Chen1, Xiaoying Wei1, Yishan Hao1, Jinming Wang1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2017-03-15 Published:2017-06-01
  • Corresponding author: Jinming Wang
  • About author:
    Corresponding author: Wang Jinming, Email:
引用本文:

李俊达, 陈美霖, 韦晓英, 郝逸珊, 王劲茗. 覆盖富血小板血浆3D打印聚己内酯支架对牙髓细胞体外生物学行为的影响[J]. 中华口腔医学研究杂志(电子版), 2017, 11(03): 149-156.

Junda Li, Meilin Chen, Xiaoying Wei, Yishan Hao, Jinming Wang. The influence of 3D-printed polycaprolactone scaffolds coated with platelet-rich plasma on the biological functions of dental pulp cells[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2017, 11(03): 149-156.

目的

探讨覆盖不同处理方法富血小板血浆(PRP)的3D打印聚己内酯(PCL)支架对牙髓细胞黏附、增殖及分化的影响。

方法

用冻干法和凝胶法制备PRP并覆盖在3D打印的聚己内酯支架上,免疫荧光染色观察各组支架牙髓细胞的早期黏附情况,细胞计数试剂盒(CCK-8)检测细胞增殖情况,Transwell小室检测细胞迁移情况,碱性磷酸酶(ALP)试剂盒测定ALP活性,实时荧光定量聚合酶链反应(PCR)检测细胞成骨相关基因的表达。采用单因素方差分析进行统计分析,LSD-t检验进行两两比较。

结果

免疫荧光结果显示黏附在冻干组的细胞最多(1999.33个/总视野),凝胶组次之(1043.33个/总视野),单纯支架组最少(843.00个/总视野),而且冻干组和凝胶组相比,差异有统计学意义(F= 19.36,P<0.01),冻干组和单纯支架组对比,差异有统计学意义(F = 23.42,P<0.01)。细胞增殖实验显示,3组支架的细胞都呈增长趋势,但是在各个测定时间点,任何2组之间的细胞增殖都没有显著差异。细胞迁移结果显示,冻干组(279.75个/视野)和凝胶组(167.00个/视野)的细胞数目显著高于单纯支架组(134.75个/视野),差异有统计意义(F冻单组= 7.45、F凝单组= 1.88,P<0.01),而冻干组和凝胶组相比则差异无统计学意义。ALP活性结果显示,3个组别中冻干组活性最高(ALP7 d= 12.57 U/gprot、ALP14 d= 23.20 U/gprot、ALP21 d= 58.98 U/gprot),在第7天凝胶组次之(6.65 U/gprot),单纯支架组最低(5.93 U/gprot),而在第14和21天,单纯支架组次之(ALP14 d= 15.56 U/gprot、ALP21 d= 53.74 U/gprot),凝胶组最低(ALP14 d= 13.35 U/gprot、ALP21 d= 47.83 U/gprot)。在第7、14和21天,冻干组的ALP活性显著高于凝胶组(F7 d= 3.20,P7 d<0.01;F14 d= 5.34,P14 d<0.01;F21 d= 6.04,P21 d<0.01)和单纯支架组(F7 d= 3.60,P7 d= 0.04;F14 d= 4.14,P14 d<0.01;F21 d= 2.84,P21 d= 0.01)。在第7和14天,凝胶组和单纯支架的细胞ALP活性相比差异没有统计学意义。成骨相关基因表达中,在第7和14天的RUNX2OCN表达中,除了第14天的凝胶组的OCN表达外,冻干组(OCN7 d= 4.67、RUNX27 d= 2.32、RUNX214 d= 5.88)的表达高于单纯支架组(OCN7 d= 1.00、RUNX27 d= 1.00、RUNX214 d= 1.00),差异具有统计意义(F7 d= 11.1,P7 d<0.01;F7 d= 3.20,P7 d= 0.04;F14 d= 11.80,P14 d<0.01),凝胶组(OCN7 d= 2.60、RUNX27 d= 2.23、RUNX214 d= 4.67)的表达显著高于单纯支架组,差异有统计学意义(F7 d= 4.85,P7 d<0.01;F7 d= 2.98,P7 d= 0.03;F14 d= 8.87,P14 d<0.01)。在第7天的OCN和第14天的RUNX2的表达中,冻干组(OCN7 d= 4.67)的表达水平高于凝胶组(OCN7 d= 2.60),差异有统计学意义(F= 6.26,P<0.01);而在第14天的OCN中,凝胶组表达和冻干组无明显差异。

结论

覆盖PRP的3D打印PCL支架比单纯的支架更有利于牙髓细胞的黏附、增殖和成骨分化,且冻干法优于凝胶法。

Objective

To study the influence of different 3D-printed polycaprolactone scaffolds coated with platelet-rich plasma on the adhesion, proliferation and differentiation of dental pulp cells (DPCs) .

Methods

DPCs were seeded on the scaffold of three groups. Cell attachment, proliferation and ALP activity were evaluated with immunofluorescence staining, CCK-8 assay and ALP kit, respectively. The expression of osteogenic genes was determined with RT-PCR.

Results

More cell attachment was found on the freeze-dried PRP-PCL scaffold (1999.33/field) than the rest (1043.33 and 843.00/field, F= 19.36, P<0.01) . In the cell proliferation test, the amount of cells was increased in all groups but there was no statistically significant difference between groups of the same day. The number of migrated cells at the bottom of the transwell chamber in the freeze-dried PRP-PCL scaffold group (279.75/field) was significantly higher than that of the gelatinous PRP-PCL scaffold group (167.00/field) and the bare PRP-PCL scaffold group (134.75/field) (Ff-b= 7.45, Fg-b= 1.88, P<0.01) . There was no significant difference in the migrated cells between the gelatinous PRP-PCL scaffold and bare PRP-PCL scaffold. The ALP activity of the freeze-dried PRP-PCL scaffold (ALP7 d= 12.57 U/gprot, ALP14 d= 23.20 U/gprot, ALP21 d= 58.98 U/gprot) was significantly higher than that of the gelatinous PRP-PCL scaffold (ALP7 d= 6.65 U/gprot, ALP14 d= 13.35 U/gprot, ALP21 d= 47.83 U/gprot) and the bare PCL scaffold (ALP7 d= 5.93 U/gprot、ALP14 d= 15.56 U/gprot、ALP21 d= 53.74 U/gprot) on 7, 14 and 21 d (F7 d= 3.20, P7 d<0.01; F14 d= 5.34, P14 d<0.01; F21 d= 6.04, P21 d<0.01) (F7 d= 3.60, P7 d= 0.04; F14 d= 4.14, P14 d<0.01; F21 d= 2.84, P21 d= 0.01) . However, no statistically significant difference was found in the ALP activity between the gelatinous PRP-PCL scaffold and the bare PCL scaffold except for that on 21 d. Except for the expression of OCN by DPSCs on the gelatinous PRP-PCL scaffold on 14 d, the expression of RUNX2 and OCN by DPSCs on freeze-dried PRP-PCL scaffold (OCN7 d= 4.67, RUNX27 d= 2.32, RUNX214 d= 5.88) and gelatinous PRP-PCL scaffold (OCN7 d= 2.60, RUNX27 d= 2.23, RUNX214 d= 4.67) on 7 and 14 d were significantly higher than that on the bare scaffold (OCN7 d= 1.00, RUNX27 d= 1.00, RUNX214 d= 1.00) (F7 d= 11.1, P7 d<0.01; F7 d= 3.20, P7 d= 0.04; F14 d= 11.80, P14 d<0.01) . The expression of OCN on7 d and RUNX2 on 14 d on the freeze-dried PRP-PCL scaffold (OCN7 d= 4.67) was significantly higher than that of gelatinous PRP-PCL scaffold (OCN7 d= 2.60, F= 6.26, P<0.01) . However, no statistical significance was found in the expression of OCN on 14 d between the freeze-dried PRP-PCL scaffolds and the gelatinous PRP-PCL scaffolds.

Conclusion

The freeze-dried PRP-PCL scaffolds were more favorable for the adhesion, proliferation and differentiation of DPCs compared with the gelatinous PRP-PCL scaffolds.

图1 各组支架表面牙髓细胞黏附和细胞增殖情况
表1 不同组别支架细胞增殖水平的比较(±s
图2 牙髓细胞在接种后12 h的各组的迁移情况比较
图3 各组支架表面细胞在接种不同时间的碱性磷酸酶活性比较
图4 各组支架表面细胞在接种7和14天后的成骨基因表达情况
[1]
Yao Q, Wei B, Liu N,et al. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing[J]. Tissue Eng Part A,2014,7-8(21):1388-1397.
[2]
Betsch M, Schneppendahl J, Thuns S,et al. Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model[J]. PLoS One,2013,8(8):e71602.
[3]
Gronthos S, Mankani M, Brahim J,et al. Postnatal human dental pulp stem cells(DPSCs)in vitro and in vivo[J]. Proc of the Natl Acad Sci U S A,2000,97(25):13625-13630.
[4]
Pati F, Song TH, Rijal G,et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration[J]. Biomaterials,2015(37):230-241.
[5]
Yoon H, Kim GH, Koh YH. A micro-scale surface-structured PCL scaffold fabricated by a 3D plotter and a chemical blowing agent[J]. J Biomater Sci Polym Ed,2010,21(2):159-170.
[6]
Tarafder S, Koch A, Jun Y,et al. Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration[J]. Biofabrication,2016,8(2):25003.
[7]
Jang CH, Cho YB, Choi CH,et al. Effect of umbilical cord serum coated 3D PCL/alginate scaffold for mastoid obliteration [J]. Int J Pediatr Otorhinolaryngol,2014,78(7):1061-1065.
[8]
Wang H, Wu G, Zhang J,et al. Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold [J]. Colloids Surf B Biointerfaces,2016(141):491-498.
[9]
Jeong CG, Hollister SJ. A comparison of the influence of material on in vitro cartilage tissue engineering with PCL,PGS,and POC 3D scaffold architecture seeded with chondrocytes[J]. Biomaterials,2010,31(15):4304-4312.
[10]
Jo S, Kang SM, Park SA,et al. Enhanced adhesion of preosteoblasts inside 3D PCL scaffolds by polydopamine coating and mineralization[J]. Macromol Biosci,2013,13(10):1389-1395.
[11]
Kang SW, Bae JH, Park SA,et al. Combination therapy with BMP-2 and BMSCs enhances bone healing efficacy of PCL scaffold fabricated using the 3D plotting system in a large segmental defect model[J]. Biotechnol Lett,2012,34(7):1375-1384.
[12]
Reed GL. Platelet secretory mechanisms[J]. Semin Thromb Hemost,2004,30(4):441-450.
[13]
Chang SH, Hsu YM, Wang YJ,et al. Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma[J]. J Mater Sci Mater Med,2009,20(1):23-31.
[14]
Lee JH, Nam J, Kim HJ,et al. Comparison of three different methods for effective introduction of platelet-rich plasma on PLGA woven mesh[J]. Biomed Mater,2015,10(2):25002.
[15]
Zhong D, Wang CG, Yin K,et al. In vivo ossification of a scaffold combining β-tricalcium phosphate and platelet-rich plasma[J]. Exp Ther Med,2014,8(5):1381-1388.
[16]
Pietramaggiori G, Kaipainen A, Czeczuga JM,et al. Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds[J]. Wound Repair Regen,2006,14(5):573-580.
[17]
Nakatani Y, Agata H, Sumita Y,et al. Efficacy of freeze-dried platelet-rich plasma in bone engineering[J]. Arch Oral Biol,2017(73):172-178.
[18]
Sell SA, Wolfe PS, Ericksen JJ,et al. Incorporating platelet-rich plasma into electrospun scaffolds for tissue engineering applications[J]. Tissue Eng Part A,2011,17(21-22):2723-2737.
[19]
胡军红,谢建红,陆玲,等.标本溶血对血清酶测定影响的研究[J].吉林医学,2014,35(1):115-116.
[20]
郑铁生,叶立新,薛锦,等.不同激活型缓冲体系对碱性磷酸酶活性测定的影响[J].临床检验杂志,2005,23(6):423-424.
[1] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[2] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[3] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[4] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[5] 王泽勇, 覃健. 白细胞含量对富血小板血浆治疗运动系统损伤的影响[J]. 中华关节外科杂志(电子版), 2023, 17(05): 684-688.
[6] 詹钦文, 靳科, 袁家钦. 不同浓度自体富血小板血浆对慢性跟腱损伤的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(04): 500-507.
[7] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[8] 刘竹影, 周年苟, 李泳祺, 周丽斌. 空心环钻联合手术导板用于自体牙移植牙槽窝备洞[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 418-423.
[9] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[10] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[11] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[12] 金浪, 石洁, 黄正, 贾永伟, 张建坡, 魏礼成, 金昊雷. 3D打印数字技术辅助改良交叉PVP对重度骨质疏松性椎体压缩骨折脊柱-骨盆矢状面平衡状态的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 263-268.
[13] 吕东, 朱盛, 胡秋平, 邹松, 黄文强, 唐全进, 黄海. 基于增强CT与增强MRI融合的3D打印导板辅助脑肿瘤穿刺活检一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 251-254.
[14] 任鹏涛, 郝英豪, 阮红训, 秦晓宁, 张苑, 李猛. Lnczc3h7a靶向CTHRC6对肠癌细胞的增殖和迁移的影响[J]. 中华临床医师杂志(电子版), 2023, 17(03): 320-325.
[15] 陈雄焕, 胡培阳. 3D打印模型在骨盆骨折外固定训练中的效果研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 163-165.
阅读次数
全文


摘要