切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (06) : 395 -401. doi: 10.3877/cma.j.issn.1674-1366.2016.06.006

所属专题: 文献

基础研究

聚甲基丙烯酸甲酯微球改型的人工树脂牙耐磨性能和硬度的研究
刘珂1, 浩志超2,(), 王茂夏3, 孟玉坤3   
  1. 1. 272000 济南医学院附属医院口腔科
    2. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    3. 610041 成都,四川大学口腔国家重点实验室,四川大学华西口腔医院口腔修复科
  • 收稿日期:2016-10-19 出版日期:2016-12-01
  • 通信作者: 浩志超

Wear resistance and hardness of a polymethyl methacrylate pearls modified artificial resin tooth

Ke Liu1, Zhichao Hao2,(), Maoxia Wang3, Yukun Meng3   

  1. 1. Department of Stomotology, First Affiliated Hospital of Jining Medical University, Jining 272000, China
    2. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    3. State Key Laboratory of oral diseases, Sichuan University, Department of Prosthodontics, Hospital of West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-10-19 Published:2016-12-01
  • Corresponding author: Zhichao Hao
  • About author:
    Corresponding author: Hao Zhichao, Email:
引用本文:

刘珂, 浩志超, 王茂夏, 孟玉坤. 聚甲基丙烯酸甲酯微球改型的人工树脂牙耐磨性能和硬度的研究[J]. 中华口腔医学研究杂志(电子版), 2016, 10(06): 395-401.

Ke Liu, Zhichao Hao, Maoxia Wang, Yukun Meng. Wear resistance and hardness of a polymethyl methacrylate pearls modified artificial resin tooth[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(06): 395-401.

目的

研究比较聚甲基丙烯酸甲酯(PMMA)微球改型的人工树脂牙与另外5种常人工树脂牙的耐磨耗特性和硬度。

方法

本实验选取6种人工牙(3种高交联树脂牙:Vita Lingoform,Premium,Portrait IPN;2种合成树脂牙Yamahachi PX,Kaiplus和传统的PMMA树脂牙Yamahachi FX,n= 8),其中Vita Lingoform为PMMA微球改型的新型树脂牙。另外,选取牙釉质样本为对照组。使用高温微动摩擦试验机进行反复滑动摩擦实验后用三维轮廓扫描仪确定磨痕的深度损失和体积损失,并用微压痕法测定各组样本的维氏硬度,分析统确定各组样本之间磨耗损失和硬度的差异以及人工树脂牙的磨耗损失与维氏硬度值进行相关性分析。

结果

磨痕分析结果显示,6种人工树脂牙以及牙釉质的磨耗损失(深度损失μm,体积损失mm3 × 10-3)差异有统计学意义(H深度损失 = 95.01,H体积损失 = 93.96,P<0.001)。加入PMMA微球的Vita Lingoform组树脂牙的磨耗损失量(1.58,1.377)低于传统的PMMA树脂牙Yamahachi FX(2.22,1.983,P<0.001),但高于复合树脂牙Yamahachi FX和Kaiplus(1.01 ~ 1.06,0.935 ~ 0.990,P<0.05)。同时,Vita Lingoform组树脂牙组(37.2)的硬度低于复合树脂牙组(41.0 ~ 43.1,P<0.05),高于传统的PMMA树脂牙Yamahachi FX(25.9,P<0.001)。高交联组树脂牙Premium和Portrait IPN的磨耗损失量(1.57 ~ 1.64,1.360 ~ 1.409)和硬度(36.1 ~ 37.4)与Vita Lingoform组差异均没有统计学意义(P>0.05)。6种人工树脂牙的耐磨性能和硬度均低于牙釉质对照(0.31,0.213;68.2,P<0.001)。相关性分析的结果显示,硬度与深度损失(r = -0.896)和体积损失(r = -0.893)均成负相关性。

结论

PMMA微球改型的树脂牙耐磨性能和硬度均高于传统的丙烯酸树脂牙,但低于复合树脂人工牙和天然牙釉质,且与其他高交联人工树脂牙差异不大。

Objective

The purpose of this study was to evaluate the wear resistance and hardness of a polymethyl methacrylate (PMMA) pearls modified artificial resin tooth compared to five commercially available denture teeth.

Methods

Eight specimens of six different artificial resin teeth (3 highly cross-linked acrylic resin teeth: Vita Lingoform, Premium and Portrait IPN; 2 composite resin teeth: Yamahachi PX and Huge Kaiplus and 1 conventional acrylic resin teeth Yamahachi FX) were tested. One of the artificial resin teeth (Vita Lingoform) is a new PMMA pearls modified denture teeth. Human enamel was used as a control group. The specimens were mounted to a high temperature fretting abrasive tester with a pin-on-block design, and the vertical loss and volume loss of the samples were measured using three-dimensional surface profilometer. Hardness of the samples was determined using a micro-Vickers hardness tester. Data of wear loss and Vickers hardness were statistically analyzed with the Kruskal-Wallis H nonparametric test and the Spearman correlation coefficient was used to determine the relationship between the wear loss (vertical loss and volume loss) and hardness.

Results

The six artificial resin teeth and human enamel tested showed significant differences in the vertical loss (μm) and volume loss (mm3×10-3) (Hvertical loss= 95.01, Hvolume loss= 93.96, P<0.001) . Vertical loss and volume loss of the PMMA pearls modified Vita Lingoform group (1.58, 1.377) were higher than those of composite resin teeth (1.01-1.06, 0.935-0.990, P<0.05) , but lower than that of conventional acrylic resin teeth Yamahachi FX (2.22, 1.983, P<0.001) . The Vita Lingoform group (37.2) showed intermediate hardness values, which are significantly lower than those of the composite resin groups (41.0-43.1, P<0.05) . The conventional acrylic resin teeth (25.9) demonstrated the lowest hardness values (P<0.001) . No significant differences for wear loss and Vickers hardness values were found between the Vita Lingoform and the other two highly cross-linked acrylic resin teeth Premium and Portrait IPN (P>0.05) . The human enamel group revealed the highest wear resistance and Vickers hardness values (0.31, 0.213; 68.2, P<0.001) among all the materials tested. Moreover, A negative relationship was found between hardness and vertical loss (r=-0.896) and volume loss (r=-0.893) .

Conclusions

The PMMA modified artificial resin teeth revealed improved wear resistance and hardness values compared to the conventional acrylic resin denture teeth. However, it showed less wear resistance and hardness values than the composite resin teeth and human enamel. No significant differences were found for the wear loss and hardness values among the three highly cross-linked artificial resin teeth.

表1 6种人工树脂牙组成成分及生产厂家资料
图1 磨耗实验仪
表2 磨耗实验后各组人工树脂牙与牙釉质的深度损失和体积损失(±s
图2 各组人工树脂磨耗实验后磨痕的三维重建图(正面观)
图3 各组人工树脂牙和牙釉质硬度测试的结果以及硬度与磨耗损失的相关性
图4 各组人工树脂牙磨痕的表面形貌图(SEM × 5000)
[1]
Heintze SD, Zellweger G, Sbicego S,et al. Wear of two denture teeth materials in vivo—2-year results[J]. Dent Mater,2013,29(9):e191-e204.
[2]
Zeng J, Sato Y, Ohkubo C,et al. In vitro wear resistance of three types of composite resin denture teeth[J]. J Prosthet Dent,2005,94(5):453-457.
[3]
Nagarajan VS, Jahanmir S, Thompson VP. In vitro contact wear of dental composites[J]. Dent Mater,2004,20(1):63-71.
[4]
Stober T, Geiger A, Rues S,et al. Factors affecting wear of composite resin denture teeth—24-month results from a clinical study[J]. Clin Oral Investig,2012,16(2):413-420.
[5]
Schmid-Schwap M, Rousson V, Vornwagner K,et al. Wear of two artificial tooth materials in vivo:a 12-month pilot study[J]. J Prosthet Dent,2009,102(2):104-114.
[6]
Anusavice KJ, Shen C, Rawls HR. Phillips′ science of dental materials[M]. 12th Edition. Elsevier Health Sciences,2012:163-166.
[7]
Kim SK, Kim KN, Chang IT,et al. A study of the effects of chewing patterns on occlusal wear[J]. J Oral Rehabil,2001,28(11):1048-1055.
[8]
Heintze SD, Rousson V, Stober T. Patient- and therapy-related factors on the wear of denture teeth—results of a clinical trial[J]. Dent Mater,2015,31(3):302-307.
[9]
Ghazal M, Yang B, Ludwig K,et al. Two-body wear of resin and ceramic denture teeth in comparison to human enamel[J]. Dent Mater,2008,24(4):502-507.
[10]
Ghazal M, Albashaireh ZS, Kern M. Wear resistance of nanofilled composite resin and feldspathic ceramic artificial teeth[J]. J Prosthet Dent,2008,100(6):441-448.
[11]
Stober T, Henninger M, Schmitter M,et al. Three-body wear of resin denture teeth with and without nanofillers[J]. J Prosthet Dent,2010,103(2):108-117.
[12]
Heintze SD, Zellweger G, Grunert I,et al. Laboratory methods for evaluating the wear of denture teeth and their correlation with clinical results[J]. Dent Mater,2012,28(3):261-272.
[13]
Loyaga-Rendon PG, Takahashi H, Hayakawa I,et al. Compositional characteristics and hardness of acrylic and composite resin artificial teeth[J]. J Prosthet Dent,2007,98(2):141-149.
[14]
Kamonwanon P, Yodmongkol S, Chantarachindawong R,et al. Wear resistance of a modified polymethyl methacrylate artificial tooth compared to five commercially available artificial tooth materials[J]. J Prosthet Dent,2015,114(2):286-292.
[15]
Suwannaroop P, Chaijareenont P, Koottathape N,et al. In vitro wear resistance,hardness and elastic modulus of artificial denture teeth[J]. Dent Mater J,2011,30(4):461-468.
[16]
Stober T, Lutz T, Gilde H,et al. Wear of resin denture teeth by two-body contact[J]. Dent Mater,2006,22(3):243-249.
[17]
Turssi CP, Ferracane JL, Vogel K. Filler features and their effects on wear and degree of conversion of particulate dental resin composites[J]. Biomaterials,2005,26(24):4932-4937.
[18]
Nihei T, Dabanoglu A, Teranaka T,et al. Three-body-wear resistance of the experimental composites containing filler treated with hydrophobic silane coupling agents[J]. Dent Mater,2008,24(6):760-764.
[19]
Mandikos MN, McGivney GP, Davis E,et al. A comparison of the wear resistance and hardness of indirect composite resins[J]. J Prosthet Dent,2001,85(4):386-395.
[20]
Hahnel S, Schultz S, Trempler C,et al. Two-body wear of dental restorative materials[J]. J Mech Behav Biomed Mater,2011,4(3):237-244.
[1] 骆云凯, 鄢曹鑫, 张宣宣, 李如梅, 王文倩, 洪行行, 夏斌, 邹伟璞, 张珊珊, 陈剑. 声触诊弹性成像检测脾硬度对诊断慢性乙肝肝纤维化程度的应用价值[J]. 中华医学超声杂志(电子版), 2022, 19(11): 1232-1237.
[2] 樊文莉, 梁潇, 杜京奚, 王鹏, 杨勇. 慢性肾病患者肾功能与主动脉僵硬度超声评价指标的相关性[J]. 中华医学超声杂志(电子版), 2021, 18(11): 1084-1089.
[3] 魏丽群, 李一丹, 丁雪晏, 朱维维, 王娟, 王江涛, 吕秀章. 心肌弹性成像对高血压左心室不同构型患者心肌僵硬度的评价[J]. 中华医学超声杂志(电子版), 2021, 18(02): 128-134.
[4] 薛小伟, 李俊来, 万文博, 薛少伟. 剪切波弹性成像与Kindlin-2对乳腺结节纤维化程度的评估作用[J]. 中华医学超声杂志(电子版), 2020, 17(11): 1125-1130.
[5] 梁宇彤, 杨勇, 陈鹏飞, 周田, 王臻. 动脉整体顺应性与颈-股脉搏波传播速度的相关性[J]. 中华医学超声杂志(电子版), 2017, 14(09): 671-675.
[6] 刘国彬, 殷兵, 王建朝, 李升, 张晓娟, 吴卫卫, 胡祖圣, 张英泽. 人体髋臼前后柱骨硬度分布特征研究[J]. 中华关节外科杂志(电子版), 2020, 14(01): 57-62.
[7] 孙玉洁, 贾因棠. 直接抗病毒药物抗丙型肝炎病毒治疗改善肝纤维化程度的疗效[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(05): 414-420.
[8] 韦佩伶, 张雯, 谢文强, 郑美华. 2%戊二醛消毒剂对石膏模型尺寸稳定性和力学性能的影响[J]. 中华口腔医学研究杂志(电子版), 2019, 13(02): 77-83.
[9] 王青娟, 郑剑, 古日珍, 姚小虹, 康斯亮, 龙乐香, 周丹, 王小立, 郑荣琴. 声触诊弹性测量与声脉冲辐射力成像检测肝脾硬度的比较研究[J]. 中华普通外科学文献(电子版), 2019, 13(05): 398-401.
[10] 杨小勇, 宋军. 术前肝硬度值对肝癌腹腔镜与开腹手术安全性的影响探究[J]. 中华普外科手术学杂志(电子版), 2020, 14(04): 385-388.
[11] 郑剑, 吴曼丽, 张敏, 裴少华, 王青娟, 黄晶, 朱利容, 王小立, 郑荣琴. 声触诊弹性成像和声触诊弹性测量检测肝脾硬度重复性研究[J]. 中华肝脏外科手术学电子杂志, 2019, 08(04): 366-369.
[12] 杨浩, 陈景标, 张瑶, 肖远强, 邝思驰, 王劲. 三维磁共振弹性成像诊断肝癌纤维包膜形成[J]. 中华肝脏外科手术学电子杂志, 2019, 08(03): 252-255.
[13] 吴卫卫, 殷兵, 李升, 刘国彬, 张晓娟, 张英泽. 桡骨显微骨硬度分布特征的实验研究[J]. 中华肩肘外科电子杂志, 2018, 06(04): 287-291.
[14] 王宓, 张昕, 隋准, 白丽, 王琰, 左力, 王梅. 慢性肾脏病3~5期非糖尿病非透析患者动脉僵硬度及其对预后的影响[J]. 中华临床医师杂志(电子版), 2020, 14(03): 170-174.
[15] 张亚艳, 王居新, 李婷. 青年高血压患者脉搏波传导速度与心血管危险因素的研究[J]. 中华心脏与心律电子杂志, 2017, 05(04): 200-204.
阅读次数
全文


摘要